期刊文献+

基于权值分配的隐写分析算法 被引量:2

Steganalysis method based on weight allocation
下载PDF
导出
摘要 SRM算法是目前隐写分析中广泛使用的方法,但不能有效检测自适应隐写算法。为提高针对自适应隐写算法的检测率,通过改进SRM算法,利用不同区域的像素对隐写检测贡献的差异性,提出了一种基于权值分配的隐写分析算法。理论证明了权值分配能够提高隐写检测特征的分类能力,并设计了一种基于权值分配的特征提取框架。依据像素失真代价确定优先像素集,设计合理的权值函数对不同区域的像素噪声残差分配权值,提取四阶共生矩阵作为隐写检测特征。实验结果表明,在检测以HILL为代表的自适应隐写算法时,与SRM和PSRM检测算法相比,所提算法的平均错误率分别降低了2.09%和1.53%,说明能够有效实施针对自适应隐写算法的检测。 SRM( spatial rich model) is one of the most widely used steganalysis methods but it failes to detect content adaptive steganography. In order to enhance the detection rate of those algorithms, this paper improved SRM and presented a novel stega- nalysis method based on weight allocation, considering the diversity of contribution those pixels made located in different region. It was proved theoretically that weight allocation could be used to enhance the classification ability of steganalysis fea- tures and designed a framework for extracting features. Firstly, preferential pixel Set was determined according to embedding costs. Secondly, in order to assign weights to pixel noise residuals in different regions, it described a proper function. Finally,it extracted the forth-order co-occurrence as the steganalysis feature. Experimental results show that in comparison to SRM and PSRM(projection spatial rich model) ,the average error rate of the proposed method decreased by 2.09% and 1.53% when detecting HILL, therefore demonstrating the detection validity of content adaptive steganography.
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3468-3471,3475,共5页 Application Research of Computers
基金 信息保障技术重点实验室开放基金资助项目(KJ-14-106)
关键词 信息隐藏 隐写分析 自适应隐写 权值分配 分类能力 information hiding steganalysis content adaptive steganography weight allocation classification ability
  • 相关文献

参考文献21

  • 1熊钢,平西建,张涛,孙兵.一种基于图像内容的最低有效位匹配隐写分析方法[J].电子与信息学报,2012,34(6):1380-1387. 被引量:5
  • 2栗风永,张新鹏,余江.结合集成比例训练的彩色JPEG图像隐写分析[J].电子与信息学报,2014,36(1):114-120. 被引量:4
  • 3汪然,平西建,许漫坤,李文祥,张涛.基于四叉树分割的JPEG隐写分析[J].电子与信息学报,2014,36(3):631-638. 被引量:4
  • 4Luo W, Huang F, Huang J. Edge adaptive image steganography based on LSB matching revisited[ J]. IEEE Trails on Information Foren- sics and Security,2010,5(2) :201-214.
  • 5Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganog- raphy using syndrome-trellis codes [ J]. I EEE Trans on Information Forensics and Security,2011,6(3) :920-935.
  • 6Pevny T, Filler T, Bas P. Using high-dimensional image models to per- form highly undetectable steganography [ C ]//Proc of International Workshop on Information Hiding. Berlin : Springer,2010 : 161-177.
  • 7Holub V, Fridrich J. Designing steganographic distortion using direc- tional filters[J]. IEEE Workshop on Information Forensics & Se- curity,2012,2 (4):234-239.
  • 8Holub V, Fridrich J. Digital image steganography using universal dis- tortion[ C]//Proc of the 1st ACM Workshop on Information Hiding and Multimedia Security. New York : ACM Press, 2013 : 59- 68.
  • 9Denemark T,Fridrich J, Holub V. Further study on the security of S- UNIWARD [ C ]//Proe of SPIE, Electronic Imaging, Media Water- marking, Security, and Forensics. 2014.
  • 10Li B, Wang M, Huang J. A new cost function for spatial image steg- anography [ C ]//Proc of IEEE International Conference on Image Pro- cessing. 2014:27-30.

二级参考文献58

  • 1何军辉,黄继武.彩色JPEG图像的隐写分析[J].电子学报,2005,33(B12):2543-2548. 被引量:4
  • 2Li B, He J, Huang J, et al.. A survey on image steganography and steganalysis [J]. Journal of Information Hiding and Multimedia Signal Processing, 2011. 2(2): 142-172.
  • 3Harmsen J and Pearlman W A. Steganalysis of additive noise modelable information hiding[C]. Proceedings of the SPIE Security, Steganography, and Watermarking, San Jose, 2003: 131-142.
  • 4Ker A D. Steganalysis of LSB matching in grayscale images[J] IEEE Signal Processing Letters, 2005, 12(6): 441-444.
  • 5Li X, Zeng T, and Yang B. A further study on steganalysis of LSB matching by calibration [C]. Proceedings of IEEE on Image Processing, Piscataway, N J, 2008: 2072-2075.
  • 6Zhang Jun, Cox I J, and Doerr G. Steganalysis for LSB matching in images with high-frequency noise[C]. Proceeding of the IEEE Workshop on Multimedia Signal Processing, Piscataway, N J, 2007: 385-388.
  • 7Cancelli G, Doerr G, Cox I J, et al.. Detection of +1 LSB steganography based on the amplitude of histogram local extrema [C]. Proceedings of IEEE on Image Processing, Piscataway, N J, 2008: 1288-1291.
  • 8Gao Y, Li X, Yang B, et al.. Detecting LSB matching by characterizing the amplitude of histogram [C]. Proceedings of IEEE on Acoustics Speech, Signal Processing, Piscataway, NJ 2009: 1505-1508.
  • 9Kekre H B, Athawale A A, and Patki S A. Steganalysis of LSB embedded images using gray level co-occurrence matrix [J]. International Journal of Image Processing, 2011, 5(1): 36-45.
  • 10Cai K, Li X, and Zeng T. Reliable histogram features for detecting LSB matching [C]. Proceedings of IEEE International Conference on Image Processing, Hong Kong, 2010: 1761-1764,.

共引文献10

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部