期刊文献+

基于相关滤波的尺度自适应目标跟踪 被引量:10

Scale-adaptive tracking based on kernelized correlation filter
下载PDF
导出
摘要 针对视频目标跟踪中的尺度问题,提出了一种基于相关滤波的尺度自适应目标跟踪方法。首先利用核相关滤波获得目标的中心位置,然后将目标均分为四个子块,通过计算找出子块中心的最大响应位置,最后根据前后两帧目标子块中心位置的相对变化计算出尺度的伸缩系数,进而计算出目标尺度。在具有尺度变化的公开数据集上对该方法进行测试,并和多种跟踪方法作对比,实验结果表明,该方法将尺度的计算问题转换为对子块中心的定位,其平均跟踪性能优于其他方法,验证了方法的有效性。 Robust scale calculation is a challenging problem in visual tracking. Most existing trackers fail to handle large scale variations in complex videos. To address this issue, this paper proposed a robust and efficient scale-adaptive tracker in track- ing-by-detection framework, which divided the target into four patches and computed the scale factor by finding the maximum response position of each patch via kemelized correlation filter. With this method, the scale computation was transformed into locating the centers of the patches. It performed experiments on several challenging sequences with scale variations in the re- cent benchmark evaluation. And the results show that this method outperforms state-of-the-art tracking methods while opera- ting in real-time.
出处 《计算机应用研究》 CSCD 北大核心 2016年第11期3513-3516,3520,共5页 Application Research of Computers
关键词 尺度计算 目标跟踪 相关滤波 scale calculation object tracking correlation filter
  • 相关文献

参考文献19

  • 1Yiimaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM ~mputing Su~eys, 2006, 38(4) : 1-45.
  • 2Wu Yi, Lim J, Yang M H. Online object tracking: a benchmark [ C ]//Proc of IEEE Corfference on Computer Vision and Pattem Recognition. 2013: 2411-24i8.
  • 3Smeulders A W M, Chu D M, Cuechiara R, et al, Visual tracking: an experimental s urvey[J]. IEEE Trans on Pattern ~alysis and Machine Intelligent, 2014, 36(7 ) : 1442- 1468.
  • 4Bdrne D S ~ Beveridge J R, Draper B A, et al. Visual object tracking uihg adaptive eon~elation filters [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2010: 2544-2550,.
  • 5Hare S, Saffari A, Torr P H S. Struck.. structured output tracking with kernels[ C]//Proc of IEEE International Conference on Compu- ter Vision. 2011 : 263-270.
  • 6Henriques J F, Caseim R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels [ C ]//Proc of the 12th European Conference on Computer Vision. Berlin: Springer-Vertag, 2012: 702-715.
  • 7Zhang Kaihua, Zhang Lei, Yang M H. Real-time eompresive track- ing[ C]//Prec of the 12th European Conference on Computer Vision. Berlin: Spfinger-~erlag, 2012 : 864-877.
  • 8王松林,项欣光.基于压缩感知的多特征加权目标跟踪算法[J].计算机应用研究,2014,31(3):929-932. 被引量:16
  • 9Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes fi," real-time visual tracking[ C ]//Pro~: of IEEE Conferenee on Com- puler Vision and Pallern Recognition. 2014: 1090-1097.
  • 10Zhang Kaihua, Zhang Lei, lJu Qingshan, et al. Fast visual tracking via dense spatio-temporal context learning[ C ]//Proe of the 13th Euro- peru1 Cnnferenee on Computer Vision. Berlin:Springer,2014:127-141.

二级参考文献14

  • 1GONZALEZ R C,WOOD R E. 数字图像处理[M].2 版. 北京: 电子工业出版社,2007:175.
  • 2王展青,凡友福,张桂林.跟踪遮挡目标的一种鲁棒算法[J].计算机工程与应用,2007,43(27):50-53. 被引量:11
  • 3VERNON D. Machine vision-automated visual inspection and robot vision [ M ]. Englewood Cliffs, NJ : Prentice Hall, 1991:2.
  • 4AVIDAN S. Support vector tracking [ J]. IEEE Trans on Pattern Analysis and Machine InteUigence,2004, 26(8):1064-1072.
  • 5LEARNED-MILLER E G, SEVILLA-I,ARA L. Distribution fiehls for tracking[ C ]//Proc of IEEE Conference on Computer Vision and Pat- tern Recog-nition. 2012 : 1910-1917.
  • 6ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Re- cognition. 2012 : 1940-1947.
  • 7DONOHO D L. Compressed sensing [J]. IEEE Trans on Informa- tion Theory,2006, 52(4) : 1289-1306.
  • 8CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
  • 9LI Han-xi, SHEN Chun-hua, SHI Qin-feng. Real-time visual trae- king using compressive sensing [ C ~//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:1305-1312.
  • 10ZHANG Kai-hua, ZHANG Lei, YANG M S. Real-time compressive tracking [ C ]//Proc of the 12th European Conference on Computer Vi- sion. Berlin: Springer-Verlag, 2012:864-877.

共引文献15

同被引文献48

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部