摘要
在分析P2P网贷征信特征的基础上,建立了具有明显行业特征的个人信用风险评价指标体系;使用支持向量机和GA-BP神经网络法来对个人信用风险进行评估。实证分析表明支持向量机有着更高的分类准确率,同时也验证了该评价模型在实际中能较为准确地得到个人信用风险评价结果,有助于提高P2P平台的风险控制能力。
On basis of analyzing P2P internet loan credit investigation,personal credit risk assessment index system with obvious industry characteristics has been built;this text uses vector machine and GA-BP neural network method to assess personal credit risk,the empirical analysis shows that supporting vector machine has higher sorting accuracy and verifies that this assessment model in practical can get accurate personal credit risk assessment result and contributes to improving anti-risk ability of P2P.
作者
贾湖
张闻洲
Jia Hu Zhang Wenzhou(College of Management and Economics, Tianjin University, Tianjin 300072 ,Chin)
出处
《甘肃科学学报》
2016年第5期130-134,147,共6页
Journal of Gansu Sciences