期刊文献+

基于压缩感知的视频信号采集观测值渐进量化算法

Progressive Quantization Algorithm for Video Signal Acquisition Based on Compressed Sensing
下载PDF
导出
摘要 在基于压缩感知的视频信号采集中,观测值的量化方法会对重构质量产生重大的影响.为了设计一种性能较优的观测值量化方法,根据视频信号的帧间相关性和压缩感知的视频采集信号观测值特性,提出了基于压缩感知的视频采集信号观测值渐进量化算法.该算法将非关键帧观测值均匀量化后只传输若干不太重要的码平面,在重构端利用邻近的已解码帧通过运动估计生成该非关键帧的边信息帧,再通过观测得到该非关键帧观测值的估计,结合接收到的不太重要码平面信息,通过渐进量化的逆量化得到精确的观测值.实验结果表明:与均匀量化算法相比,文中算法在不增加编码端复杂度和不降低视频序列重构质量的基础上,能大幅降低码率;在相同码率下,不同序列获得的平均增益在0.5~2.0 d B之间,具有较高的率失真性能. In the video signal acquisition process on the basis of compressed sensing,the quantization method of measured values influences the reconstructed quality remarkably. In order to design a high-performance quantization method of measured values,a progressive quantization algorithm for compressed video sensing measurements named VPQ( Video Progress Quantization) is proposed on the basis of the inter-frame correlation of videos and the characteristics of measured compressed video sensing signals. In this algorithm,the measured non-key frames are quantized and only some bitplanes with less importance are transmitted. At the decoder,neighbor reconstructed frames are applied to motion estimation to generate the side information of non-key frames,and then the non-key frame measurements are estimated by measuring the side information frame. Finally,in combination with the bitplanes with less importance transmitted from the encoder, accurate measurements are obtained via the inverse quantization of progressive quantization. Experimental results show that,in comparison with uniform scalar quantization,the proposed VPQ algorithm helps greatly decrease the code rate without additional complexity and reconstruction quality degradation; and that it is of higher rate-distortion performance,with a gain ranging from 0. 5 to2. 0 d B for different sequences.
作者 杨春玲 刘璇
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期15-21,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61471173) 广东省自然科学基金资助项目(2016A030313455)~~
关键词 渐进量化 压缩感知 视频编码 progressive quantization compressed sensing video coding
  • 相关文献

参考文献3

二级参考文献42

  • 1王洋,陈建文,刘中,刘爱芳.多运动目标ISAR成像方法研究[J].宇航学报,2005,26(4):450-454. 被引量:16
  • 2张焕颖,张守宏,李强.高速运动目标的ISAR成像方法[J].电子与信息学报,2007,29(8):1789-1793. 被引量:18
  • 3Eldar Y C and Kutyniok G. Compressed Sensing: Theory and Applications[M]. Cambridge: Cambridge University Press, 2012: 1-5.
  • 4Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 5Baraniuk R C, Cevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on InformationTheory, 2010, 56(4): 1982-2001.
  • 6Oechard G, Zhang J, Suo Y, et al.. Real time compressive sensing video reconstruction in hardware[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2(3): 604-614.
  • 7Holloway J, Sankaranarayanan A C, Veeraraghavan, A, et al.. Flutter shutter video camera for compressive of videos[C]. IEEE International Conference on Computational Photography, Seattle, WA, 2012: 1-9.
  • 8Sankaranarayanan A C, Studer C, and Baraniuk R G. CS-MUVI: video compressive sensing for spatial-multiplexing cameras[C]. IEEE International Conference on Computational Photography, Seattle, WA, 2012: 1-10.
  • 9Gan L. Block compressed sensing of natural images[C]. International Conference on Digital Signal Processing, Cardiff UK, 2007: 403-406.
  • 10Tramel E W. Distance-weighted regularization for compressed sensing video recovery and supervised hyperspectral classification[D]. [Ph.D. dissertation], Mississippi State University, 2012.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部