期刊文献+

级联自适应陷波器设计及不同步脉冲计数补偿 被引量:2

Design of Cascade-Connection Adaptive Notch Filter and Counting Compensation of Asynchronous Pulses
下载PDF
导出
摘要 为减小计数误差及实现多路不同步异频脉冲信号的高精度测量,设计了一款可实时估计周期脉冲信号相位的级联自适应陷波器(CANF).首先在前端固定一自适应因子为0的Liu型自适应陷波器(LANF),然后将LANF的输出作为Mojiri型自适应陷波器(MANF)的输入,再利用MANF的估计频率实时调整LANF,最后在流量计标准装置中实现CANF的相位实时估计,并对两路不同步脉冲信号进行精度补偿.仿真实验结果表明CANF的计数误差小于±0.047个脉冲,工程应用实验结果表明CANF的计数误差小于±0.045个脉冲,说明了文中通过实时计算信号相位进行计数补偿的方法能有效提高脉冲计数检定精度和多路并行检定的实用性. In order to reduce counting error and implement high-accuracy measurement of multi-channel asynchronous impulse signals with different frequencies,a cascade-connection adaptive notch filter( CANF) for realtime phase estimation is proposed. In CANF,firstly,an ANF designed by Liu( LANF) with an adaptive factor of0 is set in the front of ANF,and the output of LANF is used as the input of an ANF designed by Mojiri( MANF).Secondly,the estimated frequency of MANF is used to adjust the frequency of LANF in real time. Then,CANF is applied to a multi-station flowmeter calibration equipment and is used to calculate the real-time phase of two channels of asynchronous impulse signal. Finally,simulation and practical application of CANF are carried out,with the corresponding counting errors being less than ± 0. 047 and ± 0. 045, respectively, which means that the counting error compensation via real-time phase calculation effectively improves the counting accuracy of asynchronous pulses and the practicability of multi-channel parallel calibration.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期84-89,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家重大科学仪器设备开发专项(2013YQ230575) 广州市技监局科技计划项目(2015KJ35)~~
关键词 陷波器 级联 自适应算法 不同步脉冲 误差补偿 notch filters cascade connections adaptive algorithms asynchronous pulse error compensation
  • 相关文献

参考文献3

二级参考文献28

  • 1洪奕光,王剑魁.一类非线性系统的非光滑有限时间镇定[J].中国科学(E辑),2005,35(6):663-672. 被引量:10
  • 2刘海军,慕小武.一类随机系统的有限时间镇定[J].数学的实践与认识,2007,37(17):120-126. 被引量:1
  • 3Dorato Peter.Short-time stability in linear time-varying sys- tems[C]//Proceedings ofthe IRE International Convention Record:Part 4.New York:Institute of Radio Engineers, 1961:83-87.
  • 4Weiss L,Infante E.Finite time stability under perturbing forces and on product spaces[J ].IEEE Transactions on Au- tomatic Control, 1967,12 ( 1 ) : 54-59.
  • 5Amato F,Ariola M,Dorato P.Finite-time control of linear systems subject to parametric uncertainties and disturbances [ J ] .Automatica, 2001,37 (9) : 1459-1463.
  • 6Amato F,Ariola M.Finite-time control of discrete-time linear system [J].IEEE Transactions on Automatic Control,2005, 50(5) :724-729.
  • 7Amato F,Ariola M,Cosentino C.Finite-time stabilization via dynamic output feedback [J].Automatica,2006,42(2) :337- 342.
  • 8Amato F,Ariola M,Cosentino C.Finite-time control of dis- crete-time linear systems:analysis and design conditions [ J ].Automatica, 2010,46 ( 5 ) : 919-924.
  • 9Amato F,Cosentino C ,Ariola M.Sufficient conditions for fi- nite-time stability and stabilization of nonlinear quadratic systems [ J ].IEEE Transactions on Automatic Control, 2010, 55(2) :430-434.
  • 10Amato F, Ambrosino R, Cosentino C, et al,Finite-time stabi- lization of impulsive dynamical linear systems [J].Nonli- near Analysis: Hybrid Systems, 2011,5 ( 1 ) : 89-101.

共引文献9

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部