期刊文献+

机敏约束层阻尼薄板有限元建模与实验研究 被引量:1

Finite Element Modeling and Experiment Research of Smart Constrained Layer Damping Thin Plate
下载PDF
导出
摘要 基于Kichhoff薄板理论,考虑基层、粘弹性层和压电层的耦合运动及位移协调关系,采用有限元法建立了机敏约束层阻尼结构的单元动力学方程。在单元组集后的系统总动力学方程中将基层的弹性结构阻尼以比例阻尼的形式给出,同时为表征粘弹性材料随温度、频率变化的力学特性,结合GHM(GollaHughes-Mctavish)模型推导出了结构的有限元总动力学分析方程。以局部覆盖机敏约束层阻尼的对边固支板铝板为实例,通过动力学参数理论计算与模态试验对比分析,结果表明:考虑基层阻尼后的分析结果明显好于不考虑基层阻尼的分析结果,与实验更接近;在总动力学方程中引入GHM模型,可以用相对较少的耗散自由度得到较准确的有限元动力学模型,减少了计算工作量。 Considering the coupled motion and displacement coordination relationship of basic layer,viscoelastic layer and piezoelectric layer,we establish the dynamic equations of plate with smart constrained layer damping based on the Kirchhoff thin plate theory. The elastic structure damping of basic layer was taken into account using proportional damping,and the global dynamic analysis equations of finite element was established based GollaHughes-Mctavish( GHM) model to represent the mechanical characterization of viscoelastic materials varying with temperature and frequency. The comparison of theoretical calculation and modal experiments for kinetic parameters was conducted with the examples of clamped-clamped plate with partially treated smart constrained layer damping.The results show that the analysis results considering basic layer damping are closer to the experiment,significantly better than the results without considering basic layer damping. The finite element dynamic model can be obtained accurately by lesser dissipation of degrees of freedom using the method of introducing GHM model in global dynamic equations,and the computation cost can also be reduced.
出处 《机械科学与技术》 CSCD 北大核心 2016年第10期1499-1504,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 中央高校基本科研业务费(CDJZR12110006) 国家"863"计划项目(2012AA111803)资助
关键词 机敏约束层阻尼 有限元 结构阻尼 GHM模型 动力学方程 computer simulation damping dynamical systems experiments kinematics mathematical models modal analysis models stiffness matrix structural analysis vibrations(mechanical) smart constrained layer damping finite element structural damping GHM model dynamic equation
  • 相关文献

参考文献5

二级参考文献62

  • 1沈顺根,冷文浩.粘弹性线性复合结构动力特性分析[J].中国造船,1996,37(2):44-52. 被引量:9
  • 2黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18. 被引量:140
  • 3陈前 朱德懋.关于复合结构振动分析中粘弹性材料本构方程的形式[J].应用力学学报,1987,4(1):39-51.
  • 4陈前.粘弹性复合结构的动力分析:(博士学位论文)[M].南京:南京航空学院,1987..
  • 5张希农.可控约束阻尼层及其在航天结构中的应用:(博士学位论文)[M].西安:西安交通大学,1998..
  • 6Christensen R M. Theory of viscoelasticity[J],New York;Academic Press,1982
  • 7Scanlan R H. Linear damping models and causality in vibrations [J]. Sound and Vibration, 1970, 13(4):499-509
  • 8Bert C W. Material Damping . An Introductory Review of Mathematical Models, Measures and Experimental techniques, J. Sound & Vib,1973,29:129-135
  • 9Minle H K. The impulse response function of a single degree of freedom system with hysteretic damping [J]. Sound and Vibration, 1985,100(4):590-593
  • 10Lesieufre G A ,Bianchini E. Time domain modeling of linear viscoelasticity using anelastic displacement fields. Journal of Vibration and Acoustics, 1995,117(4):424-430

共引文献81

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部