期刊文献+

基于多特征决策融合的SAR飞机识别 被引量:3

SAR image recognition based on multi-feature decision fusion for plane
下载PDF
导出
摘要 针对高分辨率SAR图像的飞机目标识别问题,提出了一种基于飞机几何特征、PCA特征、Hu不变矩等多特征决策融合的自动目标识别方案。针对飞机样本特点,分别提取飞机的几何长宽特征、PCA特征和Hu不变矩特征,使用三个支持向量机分类器分别对样本的三类特征进行预分类,然后采用基于等级的决策融合方法将预分类结果进行决策融合,输出最终的目标类别。实验过程中,随机选取一定百分比的样本进行训练,获得分类器模型,对全部的样本进行测试识别。通过实验发现,将几何特征、PCA特征和Hu不变矩特征的分类结果进行决策融合后,克服了单一特征决策的不准确性,有效地提高了每一类样本的识别准确率。 In order to recognize the plane target of high resolution synthetic aperture radar (SAR) image, an automatic tar- get recognition scheme based on multi-feature decision fusion of the plane's geometric feature, principal component analysis (PCA) feature and Hu moment invariant is presented. Aiming at the characteristics of plane sample, the geometric length-width feature, PCA feature and Hu moment invariant feature are extracted respectively from SAR images. Three support vector ma- chine classifiers are used to presort the three features of the sample respectively. And then the ranking-based decision fusion method is used to decide and fuse the presort results, and output the final target class. The sample with a certain percentage is randomly selected in the experiment process for training. The classifier model was obtained to test and recognize the whole sam- pies. The experimental results show that the decided and fused classification results of geometric feature, PCA feature and Hu moment invariant feature overcame the inaccuracy of using single feature decision, and improved the recognition accuracy of each type sample effectively.
作者 胡燕 李元祥 郁文贤 HU Yan LI Yuanxiang YU Wenxian(Shanghai Jiao Tong University, Shanghai 200240, Chin)
机构地区 上海交通大学
出处 《现代电子技术》 北大核心 2016年第21期50-55,60,共7页 Modern Electronics Technique
关键词 SAR图像 目标识别 几何特征 PCA特征 HU不变矩 基于等级的决策融合 SAR image target recognition geometric feature PCA feature I-Iu moment invariant ranking-based decision fusion
  • 相关文献

参考文献14

  • 1邵大培,张艳宁,魏巍.基于PCA和图像匹配的飞机识别算法[J].中国体视学与图像分析,2009,14(3):261-265. 被引量:6
  • 2侯一民,伦向敏.基于矩与角点特征的飞机目标识别[J].计算机工程与应用,2008,44(16):179-181. 被引量:17
  • 3RIZVI S A, NASRABADI N M. Fusion techniques for automatic target recognition [C]// Proceedings of 2003 IEEE Applied Ima- gery Pattern Recognition Workshop. Washington D. C.: IEEE, 2003 : 27-32.
  • 4QIN Xianxiang, ZHOU Shilin, GAO Gui. A CFAR detection algorithm for generalized Gamma distributed background in high- resolution SAR images [J]. IEEE geoscience and remote sen- sing letters, 2013, 10(4) : 806-810.
  • 5MENG Wanjing, JU Tao, ~U Hongyun. CFAR and KPCA for SAR image target detection [C]// Proceedings of 2010 3rd Inter- national Congress on Image and Signal Processing. [S.1.]: IEEE, 2010: 1832-1835.
  • 6DIETTERICH T G. Ensemble methods in machine learning [C]// Proceedings of 2000 ACM First International Workshop on Multiple Classifier Systems. Cagliari: ACM, 2000: 1-15.
  • 7LIU Haicang, LI Shutao. Decision fusion of sparse representa- tion and support vector machine for SAR image target recogni- tion [J]. Neurocomputing, 2013, 113: 97-104.
  • 8张亚南,姚国清.基于矩不变量和神经网络的飞机识别模型[J].电脑知识与技术(过刊),2009,15(5X):3771-3772. 被引量:1
  • 9FILIPPIDIS A, JAIN L C, MARTIN N. Fusion of intelligent agents for the detection of aircraft in SAR images [J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(4): 378-384.
  • 10朱旭锋,马彩文,刘波.基于特征级融合和支持向量机的飞机识别[J].光电子.激光,2011,22(11):1710-1713. 被引量:9

二级参考文献35

共引文献37

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部