期刊文献+

基于分布式流处理框架下的移动健身管理系统研究

Research on mobile fitness management system based on distributed stream processing framework
下载PDF
导出
摘要 基于实时推荐的移动健身管理平台,将健身视频与健身管理结合,同时满足用户学习健身方法的需求和科学管理健身数据的需求。该系统实现了基于Android平台的移动健身管理应用,具备科学记录用户健身和饮食数据的功能和视频分享功能。通过对目前已有推荐系统算法的研究,根据系统和开发平台的特点,设计出一种实时视频推荐算法,然后基于目前流行的分布式流处理计算框架ApacheStorm实现了实时视频推荐引擎,移动健身管理应用提供视频实时推荐服务。 On the basis of the mobile fitness management platform based on real-time recommendation, the combination of fitness video and fitness management can simultaneously meet the requirements of learning fitness method and scientific fitness data management for users. The system realized the application of mobile fitness management based Android platform, and has the functions of scientifically user fitness and diet data recording, and video sharing. According to the study of the available recommendation system algorithm and characteristics of system and development platform, a real-time video recommendation algorithm was designed. The real-time video recommendation engine was realized based on the popular distributed stream processing computing framework ApacheStorm, in which the mobile fitness management application provides the video real-time recommendation service.
作者 孙凯涛 SUN Kaitao(College of Application Engineering, Henan University of Science and Technology, Sanmenxia 472000, Chin)
出处 《现代电子技术》 北大核心 2016年第21期132-136,共5页 Modern Electronics Technique
关键词 健身管理 视频 实时推荐 安卓 fitness management video real-time recommendation Android
  • 相关文献

参考文献8

  • 1MILICEVIC A K, NANOPOULOS A, IVANOVIC M. Social tagging in recommender systems: a survey of the state-of-the- art and possible extensions [J]. Artificial intelligence review, 2010, 33(3): 187-209.
  • 2周海平,黄凑英.两种协同过滤推荐算法的比较研究[J].贵阳学院学报(自然科学版),2015,10(1):1-4. 被引量:2
  • 3SNEHA S, JAYALAKSHMI D S, SHRUTHI J, et al. Recom- mending music by combining content-based and collaborative filtering with user preferences [C]// Proceedings of 2012 Inter- national Conference on ICERECT. India: Springer, 2012: 507- 515.
  • 4CUGOLA G, MARGARA A. Processing flows of information: from data stream to complex event processing [J]. ACM compu- ting surveys, 2012, 44(3): 359-360.
  • 5CANTADOR I, BELLOG~N R, VALLET D. Content-based re- commendation in social tagging systems [C]// Proceedings of 2010 ACM Conference on Recommender Systems. New York: ACM, 2010: 237-240.
  • 6XIA M J, ZHANG J G. Research on personalized recommenda- tion system for e-commerce based on Web log mining and user browsing behaviors [C]// Proceedings of 2010 International Con- ference on Computer Application & System Modeling. Zheng- zhou, China: IEEE, 2010: 408-411.
  • 7刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-10. 被引量:131
  • 8孟远.Android网络通信框架Volley的解析和比较[J].软件,2014,35(12):66-68. 被引量:19

二级参考文献52

  • 1赵哲,宋俊德,鄂海红.基于Android平台的移动应用构建研究与设计[J].新型工业化,2013,2(6):78-89. 被引量:30
  • 2Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 3Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 4Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 5Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 6Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 7Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.
  • 8Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53.
  • 9Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720.
  • 10Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC'00).New York:ACM Press,2000:285-295.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部