期刊文献+

关于齐次Moran集的packing维数结果 被引量:7

Packing Dimensional Results for Homogeneous Moran Sets
下载PDF
导出
摘要 该文构造了一类特殊的齐次Moran集,称为{m_(k)}-拟齐次Cantor集,并讨论了它们的packing维数.通过调整序列{m_(k)}_(k≥1)的值,构造性证明了齐次Moran集packing维数的介值定理.此外,还得到了齐次Moran集的packing维数取得最小值的一个充分条件. In this paper,we construct a class of special homogeneous Moran set,called{m_(k)}-quasi homogeneous Cantor set and discuss their packing dimensions.By adjusting the value of{m_(k)}k≥1,we constructively prove the intermediate value theorem about packing dimensions of the homogeneous Moran sets.Moreover,we obtain a sufficient condition that the packing dimension of homogeneous Moran sets may get the minimum value.
作者 胡晓梅 Hu Xiaomei(School of Mathematics and Statistics,Central China Normal University,Wuhan 430079;School of Mathematics and Statistics,Hubei University of Science and Technology,Hubei Xianning 437100)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第5期873-878,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(11271148)资助
关键词 齐次MORAN集 {m_(k)}-Moran集 {m_(k)}-拟齐次Cantor集 PACKING维数 Homogeneous Moran set {m_(k)}-Moran set {m_(k)}-Quasi homogeneous Cantor set Packing dimension
  • 相关文献

参考文献3

二级参考文献20

  • 1WU Min.The multifractal spectrum of some Moran measures[J].Science China Mathematics,2005,48(8):1097-1112. 被引量:5
  • 2Lou ManLi,Wu Min.The pointwise dimensions of Moran measures[J].Science China Mathematics,2010,53(5):246-255. 被引量:3
  • 3文志英,文志雄.代换序列研究概况[J].数学进展,1989,18(3):270-293. 被引量:15
  • 4Min Wu.The multifractal spectrum of some moran measures[J]. Science in China Series A: Mathematics . 2005 (8)
  • 5Min Wu.The Singularity Spectrum f(α) of Some Moran Fractals[J]. Monatshefte für Mathematik . 2005 (2)
  • 6J. S. Geronimo,D. P. Hardin.An exact formula for the measure dimensions associated with a class of piecewise linear maps[J]. Constructive Approximation . 1989 (1)
  • 7Das M.Billingsley’s packing dimension. Proceedings of the American Mathematical Society . 2008
  • 8Li W X.An equivalent definition of packing dimension and its application. Nonlinear Analysis . 2009
  • 9Heurteaux,Y.Dimension of Measures: the Probabilistic Approach. Publ.Mat . 2007
  • 10Billingsley,P.Hausdorff dimension in probability theory, II. Illinois Journal of Mathematics . 1961

共引文献30

同被引文献11

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部