摘要
该文构造了一类特殊的齐次Moran集,称为{m_(k)}-拟齐次Cantor集,并讨论了它们的packing维数.通过调整序列{m_(k)}_(k≥1)的值,构造性证明了齐次Moran集packing维数的介值定理.此外,还得到了齐次Moran集的packing维数取得最小值的一个充分条件.
In this paper,we construct a class of special homogeneous Moran set,called{m_(k)}-quasi homogeneous Cantor set and discuss their packing dimensions.By adjusting the value of{m_(k)}k≥1,we constructively prove the intermediate value theorem about packing dimensions of the homogeneous Moran sets.Moreover,we obtain a sufficient condition that the packing dimension of homogeneous Moran sets may get the minimum value.
作者
胡晓梅
Hu Xiaomei(School of Mathematics and Statistics,Central China Normal University,Wuhan 430079;School of Mathematics and Statistics,Hubei University of Science and Technology,Hubei Xianning 437100)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2016年第5期873-878,共6页
Acta Mathematica Scientia
基金
国家自然科学基金(11271148)资助