期刊文献+

一类二次等时微分系统在不连续二次多项式扰动下的极限环分支

Limit Cycles for Perturbing Quadratic Isochronous Center Inside Discontinuous Quadratic Polynomial Differential System
下载PDF
导出
摘要 该文研究了二次等时微分系统x=-y-4/3x^2,y=x-16/3 xy在不连续二次多项式扰动下的极限环分支问题.结果表明该系统从原点的周期环域最多可以分支出4个极限环.并且,这个上界是可以达到的. In this paper,we bound the number of limit cycles which bifurcate from the period annulus of a class of quadratic isochronous center x=-y-4/3x2,y=x-16/3xy,when perturbed inside the class of all discontinuous quadratic polynomial differential systems.Our results show that there are at most 4 limit cycles bifurcating from this system.Moreover,this bound is sharp.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2016年第5期919-927,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11401111 11171355)资助~~
关键词 极限环 不连续微分系统 平均法 二次等时系统 Limit cycle Discontinuous differential system Averaging method Quadratic isochronous center
  • 相关文献

参考文献12

  • 1Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Int J Bifurcation and Chaos, 2003, 13:47-106.
  • 2Loud W S. Behaviour of the period of solutions of certain plane autonomous systems near centers. Contrib Differ Equations, 1964, 3:21-36.
  • 3Bernardo M, et al. Bifurcations in nonsmooth dynamic systems. SIAM Rev, 2008, 50:629-701.
  • 4Braga D C, Mello L F. Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear Dyn, 2013, 73:1283-1288.
  • 5Llibre J, Mereu A C. Limit cycles for discontinuous quadratic differential systems with two zones. J Math Anal Appl, 2014, 413:763-775.
  • 6Llibre J, Novaes D D, Teixeira M A. On the birth of limit cycles for non-smooth dynamical systems. Bull Sci Math, 2015, 139:229-244.
  • 7Karlin S J, Studden W J. Tchebycheff Systems: With Applications in Analysis and Statistics. New York, London, Sidney: Intersciense Publishers, 1966.
  • 8Chicone C, Jacobs M. Bifurcation of limit cycles from quadratic isochronous. J Differential Equations, 1991, 91:268-326.
  • 9Li C, Li W, Llibre J, Zhang Z. Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centres. Nonlinearity, 2000, 13:1775-1800.
  • 10Sanders J A, Verhulst F. Averaging Methods in Nonlinear Dynamic Systems. New York: Springer-Verlag, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部