摘要
该文研究了二次等时微分系统x=-y-4/3x^2,y=x-16/3 xy在不连续二次多项式扰动下的极限环分支问题.结果表明该系统从原点的周期环域最多可以分支出4个极限环.并且,这个上界是可以达到的.
In this paper,we bound the number of limit cycles which bifurcate from the period annulus of a class of quadratic isochronous center x=-y-4/3x2,y=x-16/3xy,when perturbed inside the class of all discontinuous quadratic polynomial differential systems.Our results show that there are at most 4 limit cycles bifurcating from this system.Moreover,this bound is sharp.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2016年第5期919-927,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11401111
11171355)资助~~
关键词
极限环
不连续微分系统
平均法
二次等时系统
Limit cycle
Discontinuous differential system
Averaging method
Quadratic isochronous center