期刊文献+

具有收获和阶段结构的时滞捕食-食饵模型的Hopf分支

Hopf Bifurcation of Time-delayed Predator-prey Model with Stage Structure and Harvesting
原文传递
导出
摘要 应用微分方程分支理论,研究具有收获和阶段结构的时滞捕食-食饵模型,以时滞τ为分支参数,运用Hopf分支理论进行研究发现,在一定条件下,当时滞τ<τ_0时,正平衡点是局部渐近稳定的,当时滞τ>τ_0时,正平衡点是不稳定的,即当τ经过临界值τ0时系统出现Hopf分支。最后,用Matlab软件进行数值仿真验证了结论的正确性。 Time-delayed predator-prey model with stage structure and harvesting is studied by using the bifurcation method of differential equations. By means of the Hopf bifurcation theorem and considering the delay τ as a bifurcation parameter,the endemic equilibrium is locally stable when τ τ0,and unstable when τ τ0,Hopf bifurcation occurs when τ passes through the critical values τ0. Finally,Matlab is employed to carry out numerical simulation to verify the results.
出处 《世界科技研究与发展》 CSCD 2016年第5期1040-1045,共6页 World Sci-Tech R&D
基金 国家自然科学基金(61473237) 陕西省教育厅科研计划(15JK2181) 陕西省自然科学基础研究计划(2016JM1024) 西京学院科研基金(XJ160143)资助
关键词 阶段结构 HOPF分支 收获 捕食-食饵模型 stage structure Hopf bifurcation harvesting predator-prey model
  • 相关文献

参考文献1

二级参考文献10

  • 1Zhang Xiaoying, Shuai Zhisheng, Wang Ke. Optimal impulsive harvesting policy for single population.Nonl Anal: Real World Application, 2003, 69(4): 639-651
  • 2Pradhan T, Chandhari K S. Bioeconomised modelling of selective harvesting in an inshore-offshore fishery.Differential Equations and Dynamical Systems, 1999, 7(3): 305-320
  • 3Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993, 66
  • 4Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore:World Scientific, 1989
  • 5Ballinger G, Liu X. Permanence of population growth models with impulsive effects. Math Comput Modelling, 1997, 26:59-72
  • 6Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol, 1998,60:1-26
  • 7Lakmeche A, Arino O. Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive Systems, 2000, 7:265-278
  • 8Smith H L. Cooperative systems of differential equations with concave nonlinearities. Nonlinear Anal TMA, 1986, 10: 1037-1052
  • 9Clark C W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. New York:John Wiley & Sons, 1976
  • 10Fan M, Wang K. Optimal harvesting policy for single population with periodic coefficient. Math Biosci,1998, 152:165-177

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部