摘要
Abstract G349.7+0.2 is an interacting supernova remnant (SNR) expanding in a dense medium. Recently, a very strong γ-ray source coincident with this SNR has been revealed by Fermi-LAT and H.E.S.S. ob- servations which shows a broken power-law-like spectrum. An escaping-diffusion model, including the power-law and g-function injection, is applied to this source which can naturally explain the spectral fea- ture in both the GeV and TeV regime. We use the Markov Chain Monte Carlo method to constrain the model parameters and find that the correction factor of slow diffusion around this SNR, X-0.01 for power-law injection and X - 0.1 for g-function injection, can fit the data best with reasonable molecular cloud mass. This slow diffusion is also consistent with previous results from both phenomenological models and theoretical predication.
Abstract G349.7+0.2 is an interacting supernova remnant (SNR) expanding in a dense medium. Recently, a very strong γ-ray source coincident with this SNR has been revealed by Fermi-LAT and H.E.S.S. ob- servations which shows a broken power-law-like spectrum. An escaping-diffusion model, including the power-law and g-function injection, is applied to this source which can naturally explain the spectral fea- ture in both the GeV and TeV regime. We use the Markov Chain Monte Carlo method to constrain the model parameters and find that the correction factor of slow diffusion around this SNR, X-0.01 for power-law injection and X - 0.1 for g-function injection, can fit the data best with reasonable molecular cloud mass. This slow diffusion is also consistent with previous results from both phenomenological models and theoretical predication.
基金
the support of the National Natural Science Foundation of China(Grant No.11233001)
973 Program(Grant 2015CB857100)
he Educational Ministry of China(Grant 20120091110048)
the program B for Outstanding PhD candidate of Nanjing University