期刊文献+

Application of the three-dimensional telegraph equation to cosmic-ray transport

Application of the three-dimensional telegraph equation to cosmic-ray transport
下载PDF
导出
摘要 An analytical solution to the three-dimensional telegraph equation is presented. This equation has recently received some attention but so far the treatment has been one-dimensional. By using the structural similarity to the Klein-Gordon equation, the telegraph equation can be solved in closed form. Illustrative examples are used to discuss the qualitative differences from the diffusion solution. A comparison with a numerical test-particle simulation reveals that some features of an intensity profile can be better explained using the telegraph approach. An analytical solution to the three-dimensional telegraph equation is presented. This equation has recently received some attention but so far the treatment has been one-dimensional. By using the structural similarity to the Klein-Gordon equation, the telegraph equation can be solved in closed form. Illustrative examples are used to discuss the qualitative differences from the diffusion solution. A comparison with a numerical test-particle simulation reveals that some features of an intensity profile can be better explained using the telegraph approach.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第10期107-115,共9页 天文和天体物理学研究(英文版)
关键词 plasmas -- turbulence -- magnetic field -- diffusion -- solar wind plasmas -- turbulence -- magnetic field -- diffusion -- solar wind
  • 相关文献

参考文献20

  • 1Ablagmayer, J., Tautz, R. C., & Dresing, N. 2016, Physics of Plasmas, 23, 012901.
  • 2Abramowitz, M., & S tegun, I. A. 1970, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications).
  • 3Chambers, L. G. 1966, Proceedings of the Edinburgh Mathematical Society (Series 2), 15, 125.
  • 4Dresing, N., G6mez-Herrero, R., Klassen, A., et al. 2012, Sol. Phys., 281,281.
  • 5Effenberger, F., & Litvinenko, Y. E. 2014, ApJ, 783, 15.
  • 6Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. 2000, Table of Integrals, Series, and Products (London: Academic Press).
  • 7Heaviside, O. 1889, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27, 324.
  • 8Jokipii, J. R. 1966, ApJ, 146, 480.
  • 9Laitinen, T., Dalla, S., & Marsh, M. S. 2013, ApJ, 773, L29.
  • 10Litvinenko, Y. E., Effenberger, F., & Schlickeiser, R. 2015, ApJ 806, 217.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部