期刊文献+

数据驱动型管理:社交媒体分析技术及其管理应用研究综述 被引量:3

Data-driven Management:A Review of Social Media Analytics and the Management Application
原文传递
导出
摘要 数据驱动型管理是利用数据资源获取有用情报并指导管理实践的一种管理模式。在Web2.0时代,社交媒体提供了丰富的数据资源,但同时也对数据驱动型管理提出了新挑战。于2014年首次被提出、仍处于不断发展中的社交媒体分析技术为Web2.0时代的数据驱动型管理提供了有力支撑。本文梳理了国际主流刊物的文献,通过与传统数据挖掘和实证研究范式对比,介绍了社交媒体分析的定义与获取、解释、呈现三大步骤;按管理应用的不同将现有的六项操作技术分为两大类:面向个体管理的社交媒体分析技术和面向群体/组织管理的社交媒体分析技术;简述了社交媒体分析技术在公共管理、战略管理、运营管理、质量管理等领域的管理应用,并提出未来研究建议。 Data-driven management refers to a management pattern of searching for useful information across various dataresources to guide management practice. In the Web2.0 era, social media provides abundant data resources as well as chal-lenges for data-driven management. Social media analytics, first be proposed in 2014, is rapidly developing and now power-fully supporting the development of data-driven management in the Web2.0 era. In view of many recent studies on socialmedia analytics in academia, literatures published in international mainstream publications are reviewed; the definition ofsocial media analytics and the three-stage process including capture, understand, present are introduced by comparing withtraditional data mining and empirical research paradigm; the existing six techniques are divided into two categories on thebasis of management application: individual-oriented social media analytics and group-oriented social media analytics; theapplications of social media analytics in public management, strategic management, operation management and quality man-agement are briefly summarized. Finally, some suggestions for future research are listed.
作者 张伟 李晓丹
出处 《情报科学》 CSSCI 北大核心 2016年第11期160-166,共7页 Information Science
基金 陕西省社会科学基金年度项目(105-400221450) 校科研基金(105-400211428)
关键词 数据驱动 社交媒体分析 管理应用 data-driven social media analytics management application
  • 相关文献

参考文献34

  • 1李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1606
  • 2贾茜,陈晓丹.社会媒体研究评述[J].情报科学,2013,31(8):141-148. 被引量:16
  • 3Fan W G, Gordon M D. The power of social media analytics[J]. Communications of ACM, 2014, 57(6): 74-81.
  • 4Bonchi F, Castillo C, Gionis A, Jaimes A. Social net- work analysis and mining for business applications[J]. ACM Transactions on Intelligent Systems and Tech- nology, 2011, 2(3):22.
  • 5Li N, Wu D D. Using text mining and sentiment anal- ysis for online forums hotspot detection and forecast [J]. Decision Support Systems, 2010, 48(2):354-368.
  • 6Wang G A, Jiao J, Abrahams A S, Fan W, Zhang Z. Expertrank: A topic-aware expert finding algorithm for online knowledge communities[J]. Decision Sup- port Systems, 2013, 54(3):1442-1451.
  • 7Li K, Lin Z, Wang X. An empirical analysis of users' privacy disclosure behaviors on social network sites [J]. Information & Management, 2015,(52):882-891.
  • 8Feng H, Tian J, Wang H J, Li M. Personalized recom- mendations based on time-weighted overlapping community detectionLl].lnformation & Management, 2015, (52):789-800.
  • 9Abbasi A, Chen H. Cybergate: A design framework and system for text analysis ofcomputer-mediated communi- cation[J] .MIS Quarterly,2008,32(4):811-837.
  • 10Abbasi A, Chen H, Salem A. Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums[J]. ACM Transactions on Information Systems, 2008, 26(3):12.

二级参考文献79

  • 1恒珅,李冰,杨定友,谢百治.WIKI的教学功能及在基于网络的协作性学习中的作用[J].中国医学教育技术,2006,20(6):523-525. 被引量:3
  • 2Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 3Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 4Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 5Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 6Big Data. Nature, 2008, 455(7 209): 1-136.
  • 7Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 8Complexity. Nature Physics, 2012, 8( 1 ).
  • 9Big Data. ERCIM News, 2012, (89).
  • 10David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.

共引文献1620

同被引文献29

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部