期刊文献+

∞-余纯投射模 被引量:2

∞-copure Projective Modules
下载PDF
导出
摘要 设R是环,F∞表示平坦维数有限的左R-模类.左R-模M称为∞-余纯投射模,指对任意N∈F∞都有Ext1R(M,N)=0.证明∞-余纯投射模M是投射模当且仅当M∈F∞,同时证明当l.FFD(R)=0时,余纯投射模是∞-余纯投射模.用∞-余纯投射模刻画QF环和CPH环,证明R是QF环当且仅当每一左R-模是∞-余纯投射模,当且仅当每一N∈F∞是内射模.也证明了R是CPH环当且仅当∞-余纯投射左R-模的子模是∞-余纯投射模,当且仅当每一N∈F∞的内射维数不超过1. Let R be a ring and denote by F∞ the class of left R-modules with finite flat dimension. A left R-module M is called zo - copure projective if Ext^(M,N) =0 for all N∈ F∞. In this paper we prove that an ∞ -copure projective module M is projective if and only if M ∈F∞ , and that if 1. FFD(R) =0 then every copure projective left R-module is ∞-copure projective. Then we characterize QF and CPH rings in terms of ∞ -copure projective modules, and prove that R is QF ring if and only if every left R-module is ∞ -copure projective if and only if every N∈F∞ is injective. We also prove that R is CPH ring if and only if every submodule of an ∞ -copure pro- jective left R-module is ∞ -copure projective if and only if idR N≤1 for all N∈F∞ .
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期479-483,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171240)
关键词 余纯投射模 平坦模 ∞-余纯投射模 QF环 CPH环 copure projective module fiat module ∞-copure projective module QF ring CPH ring
  • 相关文献

参考文献16

  • 1ENOCHS E E, JENDA O M.G. Copure injective modules [ J]. Quaestiones Math, 1991,14 (4) :401 -409.
  • 2ENOCHS E E, JENDA O M G. Copure injective resolutions, fiat resolutions and dimensions [ J ]. Comment Math Univ Carohn, 1993,34(2) :203 -211.
  • 3XU J Z. Flat Covers of Modules [ M ]. Berlin: Springer - Verlag, 1996.
  • 4ENOCHS E, HEMANDEZ J M, VAIJE A D. Coherent rings of finite weak global dimension[J]. Proc AMS,1998,126:1611 -1620.
  • 5DING N Q, CHEN J L. On copure flat modules and flat resolvems[ J ]. Commun Algebra,1996,2A(3):1071 -1081.
  • 6MAO L X, DING L Q. Relative copure injective and copure flat modules[J]. J Pure Appl Algebra,2007,208(2) :635 -646.
  • 7SAZEEDEH R. Strongly torsion free, copure flat and Matlis reflexive modules[J]. J Pure Appl Algebra,2004,192(1/3) :265 -274.
  • 8FU X H, ZHU H Y, DING L Q. On copure projective modules and copure projective dimensions[J]. Commun Algebra,2012, 40( 1 ) :343 -359.
  • 9熊涛,王芳贵,胡葵.余纯投射模与CPH环[J].四川师范大学学报(自然科学版),2013,36(2):198-201. 被引量:11
  • 10GAO Z H. n- copure projective modules [ J ]. Math Notes,2015,97 (1) :58 -66.

二级参考文献16

  • 1章聚乐,东北数学,1991年,7卷,3期,326页
  • 2丁南庆,数学年刊.A,1992年,13卷,2期,230页
  • 3Rotman J J. An Introduction to Homological Algebra[ M ]. New York:Academic Press, 1979.
  • 4Enochs E, Hernandez J M, Valle A D. Coherent rings of finite weak global dimension[ J]. Proc Am Math Soc,1998,126:1611 - 1620.
  • 5Fu X H, Zhu H Y, Ding N Q. On copure projective modules and copure projective dimensions [ J]. Commun Algebra,2012, 40( 1 ) :343 - 359.
  • 6Kasch F. Modules and Rings[ C]//London Mathematical Society Monographs. London:Academic Press, 1982,17:377.
  • 7Yin H Y, Eang F G, Zhu X S, et al. w -Modules over commutative rings[J]. J Korean Math Soc,2011,48( 1 ) :207 -222.
  • 8Mimouni A. Integral domains in which each ideal is a w -ideal[ J ]. Commun Algebra,2005,33:1345 -1355.
  • 9Mahdou N, Tamekkante M. On (strongly) Gorenstein (semi) hereditary rings [ J ]. Arabian J Sci Eng,2011,36 :431 - 440.
  • 10Bennis D. Weak Gorentein global dimension [ J ]. Internet Electron J Algebra,2010,8 : 140 - 152.

共引文献17

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部