期刊文献+

环的整体强无挠维数与STH环

Global Strongly Torsion-free Dimensions of Rings and STH Rings
下载PDF
导出
摘要 设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有TorR1(D,M)=0,则D称为强无挠模.利用模的强无挠维数和环的整体强无挠维数对环进行刻画,引入了st-VN正则环和STH环的概念. Let R be a ring and D a right R-module. If Tor1^R(D,M) =0 for all left R-modules M with finite flat dimension, then D is called a strongly torsion-free. We make use of the strongly torsion-free dimension of a module and global strongly torsion-free dimen- sion of a ring to charaterize rings. Then we introduce the concept of st-VN regular rings and STH rings.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期503-507,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171240) 教育部博士点专项科研基金(20125134110002) 四川省教育厅自然科学青年基金(15ZB0030)
关键词 强无挠模 强无挠维数 整体强无挠维数 st-VN正则环 STH环 strongly torsion-free modules strongly torsion-free dimensions global strongly torsion-free dimensions st-VN regular rings STH rings
  • 相关文献

参考文献14

  • 1ROTMAN J J. An Introduction to Homological Algebra[ M ]. London : Academic Press, 1979.
  • 2XU J Z. Flat Covers of Modules [ C ]//Lecture Notes in Mathematics, 1634. Berlin : Springer - Verlag, 1996.
  • 3REZA S. Strongly torsion free, copure flat and M atlis reflexive modules [ J ]. J Pure Appl Algebra,2004,192 (1) :265 -274.
  • 4REZA S. Strongly torsion -free modules and local cohomology over Cohen -Macaulay rings[ J]. Commun Algebra,2005,33 (4) : 1127 - 1135.
  • 5YAN H Y. Strongly cotorsion (torsion -free) modules and cotorsion pairs [ J]. Bull Korean Math Soc, 2010,47 (5): 1041 - 1052.
  • 6陈勇君,王芳贵,熊涛.强无挠模和环的整体强无挠维数[J].四川师范大学学报(自然科学版),2016,39(2):163-167. 被引量:1
  • 7BASS H. Finitistic dimension and a homological generalization of semi -primary rings [ J ]. Trans Am Math Soc, 1960,95 (3) : 466 - 488.
  • 8JAIN S. Flat and FP- injective[J]. Proc AMS,1973,41(2) :437 -442.
  • 9熊涛.由模类只确定的同调理论及其应用[D].成都:四川师范大学,2016.
  • 10GRUSON L. Crit6res de plattitude et de projectivit6[ J]. Invent Math, 1971,13:1 -89.

二级参考文献46

  • 1陈幼华,王芳贵,尹华玉.关于Hom函子与Tensor函子的投射盖[J].四川师范大学学报(自然科学版),2006,29(3):264-267. 被引量:1
  • 2Lang S., Algebra (2ed.), Addision-Wesley Publishing Company, Inc., 1984.
  • 3Rotman J. J., An Introduction to Homological Algebra, New York, London: Academic Press, 1979.
  • 4Ohm J., Rush D., The finiteness of I when R[X]/I is flat, Trans. AMS, 1972, 171: 377-408.
  • 5Vasconcelos W. V., The rings of Dimension Two, New York, Basel: Marcel Dekker, Inc, 1976.
  • 6Vasconcelos W. V., On projective modules of finite rank, Proc. AMS, 1969, 22: 430-443.
  • 7Rotman J J. An Introduction to Homological Algebra[ M ]. New York:Academic Press, 1979.
  • 8Enochs E, Hernandez J M, Valle A D. Coherent rings of finite weak global dimension[ J]. Proc Am Math Soc,1998,126:1611 - 1620.
  • 9Fu X H, Zhu H Y, Ding N Q. On copure projective modules and copure projective dimensions [ J]. Commun Algebra,2012, 40( 1 ) :343 - 359.
  • 10Kasch F. Modules and Rings[ C]//London Mathematical Society Monographs. London:Academic Press, 1982,17:377.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部