期刊文献+

差分头脑风暴算法及其在频谱感知中的应用 被引量:1

Differential brain storm optimization algorithm and its application to spectrum sensing
下载PDF
导出
摘要 为了有效求解连续优化问题,基于差分进化算法和头脑风暴优化算法的智能演进原理,提出一种新的全局搜索算法,即差分头脑风暴算法。通过4个经典的基准函数对该算法进行测试,并将该算法应用于频谱感知这个认知无线电领域的热点问题,提出基于差分头脑风暴的协作式频谱感知算法。使用差分头脑风暴算法、头脑风暴算法、混合蛙跳算法以及粒子群算法进行仿真对比。仿真结果表明,所提出的算法基于设计的创新方程,具有很强的全局收敛能力,能够显著改进头脑风暴算法的性能;基于差分头脑风暴的频谱感知检测概率比其他算法都高,且收敛速度比头脑风暴算法提高至少3倍。 In order to solve continuous optimization problems effectively,a novel global search method named differential brain storm optimization( DBSO) algorithm was proposed based on the intelligent evolutionary principles of brain storm optimization( BSO) algorithm and differential evolution( DE) algorithm. The proposed algorithm was tested with four classic benchmark functions,and applied to hot spectrum sensing issue in the domain of cognitive radio,and a cooperative spectrum sensing method was proposed based on DBSO algorithm. Comparison was conducted between DBSO algorithm,BSO algorithm,shuffled frog leaping algorithm( SFLA) and particle swarm optimization( PSO) algorithm. The simulation results of the benchmark functions show that in terms of convergence precision,the presented DBSO algorithm based on new creating equations outperforms other 3 intelligent algorithms;compared with these three intelligent spectrum sensing algorithms,the detection probability of DBSO is higher,and the convergence speed of the DBSO increases 3 times compared to BSO algorithm.
出处 《应用科技》 CAS 2016年第5期14-19,23,共7页 Applied Science and Technology
基金 国家自然科学基金项目(61571149)
关键词 头脑风暴算法 差分进化算法 智能优化 协作频谱感知 基准函数 brain storm optimization difference evolution algorithm intelligent optimization cooperative spectrum sensing benchmark functions
  • 相关文献

参考文献2

二级参考文献20

  • 1商允伟,裘聿皇.一种求解数值优化问题的快速进化规划算法[J].系统仿真学报,2004,16(6):1190-1192. 被引量:8
  • 2邢立宁,陈英武,蔡怀平,陶凤源.求解全局优化问题的智能遗传算法[J].系统仿真学报,2006,18(4):1067-1069. 被引量:10
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4CABRIC D, TKACHENKO A, BRODERSEN R W. Spectrum sensing measurements of pilot, energy, and collaborative detection [ C ]//Military Communications Conference, Oct. 23-25,2006, Washington DC, USA : [ s. n. ] , 2006 : 1-7.
  • 5ONER M, JONDRAL F. On the extraction of the channel allocation information in spectrum pooling systems [ J ]. IEEE Journal on Selected Areas in Communications, 2007, 25 (3) : 558-565.
  • 6TKACHENKO A, CABRIC D, BRODERSEN R W. Cy- clostationary feature detector experiments using reconfigutable BEE2 [ C ]//New Frontiers in Dynamic Spectrum Access Networks, Apr. 17-20,2007, Dublin, Ireland: [ s. n. ] , 2007 : 216-219.
  • 7LUNDEN J, KOIVUNEN V, HUTTUNEN A,et al. Spectrum sensing in cognitive radios based on multiple cyclic frequencies [ C ]//Cognitive Radio Oriented Wireless Networks and Communications, Orlando, USA, Jul. 31- Aug. 3, 2007, Orlando, USA:[s. n. ] ,2007.
  • 8GARDNER W A. Introduction to random process with applications to signals and systems [ M ]. New York : Macmillan, 1986:301-352.
  • 9GARDNER W M. Measurement of spectral correlation [ J ]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1986, 34 (5) : 1111-1123.
  • 10ONER M, JONDRAL F. Cyclostationarity based air interface recognitions for software radio systems [ C ]//Radio and Wireless Conference, Sep. 19-22, 2004, Atlanta, USA : [ s. n. ], 2004:263-266.

共引文献26

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部