期刊文献+

一种基于低秩表示的子空间聚类改进算法 被引量:25

Improved Algorithm Based on Low Rank Representation for Subspace Clustering
下载PDF
导出
摘要 该文针对现有的基于低秩表示的子空间聚类算法使用核范数来代替秩函数,不能有效地估计矩阵的秩和对高斯噪声敏感的缺陷,提出一种改进的算法,旨在提高算法准确率的同时,保持其在高斯噪声下的稳定性。在构建目标函数时,使用系数矩阵的核范数和Forbenius范数作为正则项,对系数矩阵的奇异值进行强凸的正则化后,采用非精确的增广拉格朗日乘子方法求解,最后对求得的系数矩阵进行后处理得到亲和矩阵,并采用经典的谱聚类方法进行聚类。在人工数据集、Extended Yale B数据库和PIE数据库上同流行的子空间聚类算法的实验对比证明了所提改进算法的有效性和对高斯噪声的鲁棒性。 The nuclear norm is used to replace the rank function in the subspace clustering algorithm based on low rank representation, it can not estimate the rank of the matrix effectively and it is sensitive to Gauss noise. In this paper, a novel algorithm is proposed to improve the accuracy and maintain its stability under the Gauss noise. When building the objective function, the nuclear norm and Forbenius norm of coefficient matrix are used as the regularization terms, after a strong convex regularizer over singular values of coefficient matrix, an inexact augmented Lagrange multiplier method is utilized to solve the problem. Finally, the affinity matrix is acquired by post-processing of coefficient matrix and the classical spectral clustering method is employed to clustering. The experimental comparison results between the state-of-the-art algorithms on synthetic data, Extended Yale B and PIE datasets demonstrate the effectiveness of the proposed improved method and the robustness to Gauss noise.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2811-2818,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61473154)
关键词 子空间聚类 低秩表示 秩函数 Forbenius范数 增广拉格朗日乘子法 Subspace clustering Low rank representation Rank function Forbenius norm Augmented Lagrange multiplier method
  • 相关文献

参考文献1

二级参考文献100

  • 1Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 2Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 3Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 4Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 5Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 6Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 7Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 8Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.
  • 9Boult T E, Brown L G. Factorization-based segmentation of motions. In: Proceedings of the 1991 IEEE Workshop on Visual Motion. Princeton, NJ: IEEE, 1991. 179-186.
  • 10Wu Y, Zhang Z Y, Huang T S, Lin J Y. Multibody grouping via orthogonal subspace decomposition. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA: IEEE, 2001. 2: 252-257.

共引文献78

同被引文献137

引证文献25

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部