摘要
收集整理了多组地表移动观测站资料作为训练样本和检验样本,以工作面地质采矿条件为输入集,概率积分法预计参数为输出集,利用机器学习方法对概率积分法预测参数进行了预测。选取支持向量机、BP神经网络和偏最小二乘法3种机器学习方法对训练样本进行训练,利用训练所得模型预测检验样本中的概率积分法预测参数,并将预测结果与观测站实测值进行对比。结果表明,利用支持向量机预测下沉系数、主要影响角正切值及水平移动系数的精度最高,其平均相对误差分别达到7.46%、4.00%、13.17%;拐点偏距及开采影响传播角利用偏最小二乘法预计精度最高,平均相对误差分别为10.83%、0.88%;总体而言支持向量机的预测精度最为稳定。
出处
《测绘通报》
CSCD
北大核心
2016年第10期35-38,共4页
Bulletin of Surveying and Mapping
基金
国家自然科学基金(41472323)
安徽省对外科技合作计划(1503062020)