期刊文献+

有限群共轭类长的一个问题 被引量:1

On a Problem of the Length of Conjugacy Classes of Finite Groups
原文传递
导出
摘要 设A和B都是有限群G的子群且G=AB.若A是G的次正规子群,且对每个p∈π(G)以及每个素数幂阶的p′-元x∈A∪B,p^2均不整除|x^G|,则G为超可解群.这个结果正面解答了由石向东,韦华全和马儇龙于2013年提出的一个问题,统一推广了由刘晓蕾于2011年得到的三个定理. Let G be a finite group with subgroups A and B such that G = AB. If A is subnormal in G and for any p ∈π (G) and any p'-element x of A ∪B with prime power order, |xG| is not divisible by p2, then G is supersolvable. This result gives a positive answer to a problem posed in 2013 by Shi Xiangdong, Wei Huaquan and Ma Xuanlong and a unify generalization of three theorems obtained in 2011 by Liu Xiaolei.
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第6期795-798,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11361006 11161006) 广西大学科研基金资助项目(XGZ130761)
关键词 有限群 可解群 超可解群 共轭类长 次正规子群 finite group solvable supersolvable length of conjugacy class subnormal
  • 相关文献

参考文献12

  • 1Chillag D., Herzog M., On the length of the conjugacy classes of finite groups, J. Algebra, 1990, 131:110-125.
  • 2Cossey J., Wang Y., Remarks on the length of conjugacy classes of finite groups, Comm. Algebra, 1999, 27(9):4347-4353.
  • 3Fein B., Kantor W. M., Schacher M., Relative Brauer groups II, J Reine Angew Math., 1981, 325:39-57.
  • 4Isaacs I. M., Character Theory of Finite Groups, Dover Publications, New York, 1976.
  • 5Liu X., Notes on the length of conjugacy classes of finite groups II (in Chinese), Science China:Mathematics, 2010, 40(6):539-544.
  • 6Liu X., Wang Y., Wei H., Notes on the length of congugacy classes of finite groups, J. Pure Appl. Algebra, 2005, 196:111-117.
  • 7Qian W., Guo X., Sufficient conditions for a factorized group to be supersolvable (in Chinese), J. Shanghai University (Natural Science), 2011, 17(3):286-288.
  • 8Robinson D. J. S., A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
  • 9Ren Y., On the length of p-regular classes and the p-structure of finite groups, Algebra Colloq., 1995, 2(1):3-10.
  • 10Shi X., Wei H., Ma X., Lengths of conjugacy classes of factorized groups and structure of finite groups (in Chinese), J. Zhengzhou University (Natural Science), 2013, 45(2):10-13.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部