期刊文献+

闭值域稠定闭算子的Moore-Penrose广义逆的有限维逼近 被引量:1

Finite-Dimensional Approximation of the Moore-Penrose Inverse of a Densely Defined Closed Operator with Closed Range
原文传递
导出
摘要 研究了闭值域稠定闭算子的Moore-Penrose广义逆的有限维逼近问题.由于可接受条件相当强,我们提出更弱的条件P_(G(T_n))■P_(G(T))来研究稠定闭算子MoorePenrose广义逆的有限维逼近,也能得到相同的结论.特别地,当T为有界算子且T_n=Q_nTP_n时,条件P_(G(T_n))■P_(G(T))自然成立,于是有界线性算子Moore-Penrose广义逆的有限维逼近的一些结果会成为定理3.3的推论. We study the problem of finite-dimensional approximation of the Moore- Penrose inverse of a closed densely defined operator with closed range. Because the ad- missible conditions are quite strong, so we put forward the weaker condition PC(Tn) 8→ PG(T) to study finite-dimensional approximation of the Moore-Penrose inverse of a closed densely defined operator, which has the same conclusion. Especially, if T is a bounded linear operator and Tn = QnTPn, then the condition PG(Tn) 8→ PG(T) will hold naturally and many results of the Moore-Penrose inverse of a bounded linear operator be corollaries of Theorem 3.3.
作者 邱仁军
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第6期835-846,共12页 Acta Mathematica Sinica:Chinese Series
关键词 稠定闭算子 有限维逼近 MOORE-PENROSE广义逆 图逼近 正交投影 closed densely defined operator finite-dimensional approximation Moore-Penrose inverse graph approximation orthogonal projection
  • 相关文献

参考文献17

  • 1Du N. L., The basic principles for stable approximations to orthogonal generalized inverses of linear operators in Hilbert spaces, Numer. Funct. Anal. Optim., 2005, 26:675-708.
  • 2Du N. L., Strong convergence criteria for sequences of orthogonal projections and Galerkin approximations for generalized inverses, Acta Math. Sinica, Chin. Ser., 2007, 50(1):43-54.
  • 3Du N. L., Finite-dimensional approximation settings for infinite-dimensional Moore-Penrose inverses, SIAM J. Numer. Anal., 2008, 46:1454-1482.
  • 4Groetsch C. W., Katzenstein P. J., Keohane R. O., Stable Approximate Evaluation of Unbounded Operators, Springer, New York, 2007.
  • 5Groetsch C. W., Generalized Inverses of Linear Operators:Representation and Approximation, Dekker, New York, 1977.
  • 6Huang Q., Zhai W., Perturbations and expressions for generalized inverses in Banach spaces and MoorePen-rose inverses in Hilbert spaces of closed linear operators, Linear Algebra Appl., 2011, 435(1):117-127.
  • 7Izumino S., Convergence of generalized inverses and spline projectors, J. Approx. Theory, 1983, 38:269-278.
  • 8Kulkarni S. H., Nair M. T., Ramesh G., Some properties of unbounded operators with closed range, Proc. Math. Sci., 2008, 118(4):613-625.
  • 9Kulkarni S. H., Ramesh G., Projection methods for computing Moore-Penrose inverses of unbounded oper-ators, Indian J. Pure and Appl. Math., 2010, 41(5):647-662.
  • 10Kulkarni S. H., Ramesh G., The carrier graph topology, Banach J. Math. Anal., 2011, 5(1):56-69.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部