摘要
本文研究了客度下的条件期望。首先,在凹容度下给出了条件期望的定义,得出其具有正时齐性、转移不变性、非对称性、次可加性和单调性;接着,证明了其仍然满足C,不等式、Jensen不等式、Hlder不等式和Minkowski不等式。
In this paper, we study about the conditional expectation under the capacity. Firstly, we introduce the concept of conditional Choquet expectation which is the conditional expectation with respect to concave capacity, and then we prove some properties of this concept, which include positive homogeneity, translation invariance, asymmetry, subadditivity and monotonicity. Then, we state that Cr inequality, Schwarz inequality, Holder' s inequality, Minkowski inequality and Jensen' s inequality still hold for this kind of conditional expectations.
出处
《模糊系统与数学》
CSCD
北大核心
2016年第3期43-50,共8页
Fuzzy Systems and Mathematics
基金
河南财经政法大学重大科研基金资助项目(855006)
河南省高等学校重点科研项目(15B110002)
关键词
条件期望
凹容度
不等式
Conditional Expectation
Concave Capacity
Inequation