期刊文献+

B_4C增强铝基复合材料力学性能有限元模拟 被引量:7

Simulation of mechanical behaviors of B_4C reinforced Al matrix composites by finite element
原文传递
导出
摘要 建立了颗粒增强铝基复合材料的轴对称单胞模型,并通过有限元方法模拟了B_4C颗粒增强5083铝基复合材料的力学性能和微观应力分布。结果表明,模拟结果与实验结果吻合较好,模拟椭球体颗粒增强复合材料的抗拉强度为485 MPa,而实验值为477 MPa,相对误差仅为1.7%。颗粒形状对复合材料微观应力场有很大影响:圆柱体颗粒的尖角处容易造成应力集中,而球体颗粒界面处应力分布较为均匀。在一定范围内,复合材料的弹性模量和抗拉强度随着B_4C颗粒体积分数的增加而增加。在颗粒体积分数不变的情况下,不同长径比的颗粒沿复合材料受力方向定向排列时,颗粒的长径比越大,复合材料的弹性模量、强度等力学性能也越高。 An axisymmetric unit cell model of particle reinforced Al matrix composites was established,and the mechanical behaviors and micro-stress distribution of B4C particles reinforced Al5083 matrix composites were simulated by finite element method.The results show that the simulation result agrees well with the experimental result.The simulated tensile stress of spheroidicity particle reinforced composites is 485 MPa,while the experimental value is477 MPa,indicating a relative error as low as 1.7%.Particle shapes have a significant influence on the micro-stress field of composites:the sharp edge of cylindrical particle leads to a stress concentration easily,while the spherical particle results in a relatively uniform stress distribution at the interface.Elastic modulus as well as tensile strength of the composites increase with the increase of volume fraction for B4C particle in a certain range.In the case of constant particle volume fraction,when the particles with different aspect ratios are aligned along the load direction,the larger the aspect ratio of particles,the higher the elastic modulus and tensile strength of composites.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2016年第10期2253-2260,共8页 Acta Materiae Compositae Sinica
基金 山东省自然科学基金(ZR2014EEM010) 亚稳材料国家重点实验室(燕山大学)开放课题(201507)
关键词 复合材料 有限元方法 颗粒形状 抗拉强度 长径比 composites finite element method particle shape tensile strength aspect ratio
  • 相关文献

参考文献6

二级参考文献60

  • 1佟金,任露泉,陈秉聪.硬质陶瓷粒子增强铝基复合材料——Ⅱ—机械性能与磨损特性[J].兵器材料科学与工程,1990,13(8):56-61. 被引量:3
  • 2徐娜,宗亚平,张芳,杨玉芳.颗粒形状对铝基复合材料力学行为影响的模拟[J].东北大学学报(自然科学版),2007,28(2):213-216. 被引量:7
  • 3苏大为,赵玉涛,王雷刚,郑成琪.前处理软件与ProCAST的接口连接方式[J].特种铸造及有色合金,2007,27(5):348-350. 被引量:11
  • 4Pelleg J, Ashkenazi D. The influence of third element on the interface reactions in metal-composites: Al-graphite system [J]. Mater Sci Eng A, 2000, 281(1/2):239-247.
  • 5Chen J K, Beraun J E. A simple model for interfacial phase growth in metal matrix composites [J]. Composites Part A, 2000, 31(7): 727-731.
  • 6Orlave A. Sub grain size in view of composite model of dislocation structure [J].Mater Sci Eng A, 2001, 297( 1/2): 281-285.
  • 7Shangguan D, Ahuia S, Stefanescu D M. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface [J]. Metallurgical and Materials Transactions A, 1992: 23(2) : 669-680.
  • 8Ravi K R, Pillai R M, Amaranathan K R, Pai B C, Chakraborty M. Fluidity of aluminium alloys and composites: A review [J]. Journal of Alloys and Composites, 2008, 456 (1/2): 201-210.
  • 9Su Dawei, Zhao Yutao. Produces low pressure die casting aluminum alloy wheel aided by computer simulation [C]// The 5th Sino - Korean Conference on Advanced Manufacturing Technology. Guangzhou: Key Laboratory for Advanced Materials of Ministly of Education, Tsinghua University & South China University of Technology, 2007:48-54.
  • 10[1]Christman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites [J]. Acta Metall, 1989,37 ( 11 ) : 3029- 3050.

共引文献32

同被引文献46

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部