期刊文献+

可召回机制下的航空公司定价问题研究 被引量:1

Research of Airline Pricing Strategy for Callable Mechanism
下载PDF
导出
摘要 由于航空业高固定成本和较低边际成本,以及其产品(服务)的易逝性特点,使得航空公司不得不更深层次的挖掘其短期内有限资源的更合理化利用。由于预测自身不可避免的固疾和近些年超售负面效应越来越明显,可召回这种对舱位进行柔性分配的思想越来越受到重视。本文引入减值成本来衡量可召回机制所带来的风险成本,利用多等级差别定价理论,并假定召回补偿是采用召回前补偿的方式,建立了可召回机制下线性需求的收益优化及定价模型,而后又采用非线性规划搜索算法分别求解,并对其进行了算例验证和分析。结论表明在淡季设置可召回票的目的更多是促销,而在旺季时设置可召回票的最大目的是为了规避高舱位需求预测的不准确所带来的机会收益的损失,更多的是增加航班的收益。 Airlines have to dig deeper to rationalize limited resources within the short-term because the aviationindustry is characterized by high fixed costs, low marginal costs and perishable inventory. Predictions have una-voidable errors, and in recent years the inevitable negative effects of overbooking have become more and moreapparent, but more consideration has been given to the idea of allocating capacity strategies. In this paper weintroduce the degradation cost to measure the cost of recalling risk, and then on the basis of the multi-level theoryof differential pricing, while assuming that compensation is ahead of the recalling, we establish the static pricingmodels on linear demand. Ultimately, the search algorithm is used to solve the nonlinear programming problem,and Matlab software is used to analyze it. The conclusion shows that the aim of callable mechanism in the lowseason is promotion, while in the peak season it avoids loss of opportunity revenue due to high level capacityinaccurate forecasting, which can increase flights' revenue.
作者 官振中 宋燕歌 GUAN Zhen-zhong SONG Yan-ge(School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2016年第5期188-195,共8页 Operations Research and Management Science
基金 国家自然科学基金资助项目(71572154)
关键词 收益管理 可召回机制 机票定价 优化模型 revenue management callable mechanism fare pricing optimization model
  • 相关文献

参考文献1

二级参考文献16

  • 1Bitran G, Caldentey R. An overview of pricing models for revenue management[J]. Manufacturing and Service Operations Management, 2003, 5(3): 203-229.
  • 2Lee T C, Hersh M. A model for dynamic airline seat inventory control with multiple seat bookings[J]. Trans- portation Science, 1993, 27(3): 252-265.
  • 3Subramanian J, Stidham S, Lautenbacher C J. Airline yield management with overbooking, cancellations, and no-shows[J]. Transportation Science, 1999, 33(2): 147-167.
  • 4Chen S X, Lin B, Li Z F. The optimal seat allocation for the two-flight problem with a flexible demand segment[J]. European Journal of Operational Research, 2009, 201(3): 897-908.
  • 5Liang Y G. Solution to the continuous time dynamic yield management model[J]. Transportation Science, 1999, 33(1): 117-123.
  • 6Feng Y, Xiao B C. Optimal policies of yield management with multiple predetermined prices[J]. Operations Research, 2000, 48(2): 332- 343.
  • 7Gallego G, Van Ryzin G J. Optimal dynamic pricing of inventories with stochastic demand over finite horizons[J]. Management Science, 1994, 40(3): 999-1020.
  • 8Dimitris B, Sanne D B. Dynamic pricing and inventory control for multiple products[J]. Journal of Revenue and Pricing Management, 2005, 3(4): 303-319.
  • 9Lin Y, Sibdari Y. Dynamic price competition with discrete customer choices[J]. European Journal of the Oper- ational Research, 2008, 197(3): 121-133.
  • 10Walczak D, Brumelle S. Semi-Markov information model for revenue management and dynamic pricing[J]. OR Spectrum, 2005, 29(1): 61-83.

共引文献17

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部