期刊文献+

应用细观力学与扩展有限元法数值模拟钻柱损伤

Numerical simulation of drill string damage based on micromechanics and XFEM methods
下载PDF
导出
摘要 钻井过程中,钻柱承受着拉扭等多种交变载荷的作用,其损伤机理一直是力学界深入研究的课题。笔者首先根据细观力学分析的基本原理,采用Abaqus软件的脚本语言Python建立细观尺度下晶粒分布模型,然后采用断裂力学算法——扩展有限元法对含有微裂纹的细观尺度下晶粒模型进行计算,分析裂纹的动态扩展过程以及相应的应力应变分布特征,最后根据细观力学中"均匀化"方法对不同时刻的应力应变进行处理,得到微裂纹扩展对钻杆材料宏观性能的影响。在宏观尺度下处于弹性阶段的钻杆材料,在细观尺度下仍会出现塑性区,且在微裂纹不扩展的情况下,弹性模量是恒定的。文章提出的思路为深入探索钻柱材料断裂机理提供了新的方法。 During the drilling process,the drill string subjects to various alternating loads.Therefore,mechanics community has always been deeply studying its damage mechanism.In this paper,we first used the Python scripting language to establish a grain-size distribution model at the meso-scale on Abaqus software platform based on the basic principle of mesomechanics analysis.Then,the fracture mechanics algorithm—extended finite element method(XFEM)was applied to calculate the meso-scale grain model which contains micro-cracks and analyze the crack dynamic simulation propagation and distributions characteristics of stress and strain in this process.At last,by using the mesomechanics homogenization method,we handled the stress and the strain at different time,and obtained the effect of micro-crack propagation on macro-properties of drill string material.For drill pipe in elastic deformation stage at macro-scale,plastic zone may also exist at meso-scale and elasticity modulus is constant when there is no microcracks propagation.The idea of this paper can provide a new method for deeply exploring damage mechanism of drill string.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期121-128,共8页 Journal of Chongqing University
基金 国家自然科学基金资助项目(51574198) 国家教育部博士点基金资助项目(20135121110005)~~
关键词 钻柱损伤 细观力学 均匀化 微裂纹 扩展有限元 drill string damage mesomechanics homogenization micro-crack extended finite element method(XFEM)
  • 相关文献

参考文献13

  • 1Ghasemloonia A, Rideout D G, Butt S D. Analysis of multi-mode nonlinear coupled axial-transverse drillstring vibration in vibratior~" assisted rotary drilling[J]. Journal of Petroleum Science and Engineering, 2014, 116(2) : 36-49.
  • 2Moradi S, Ranjbar K. Experimental and computational failure analysis of drillstrings[J]. Engineering Failure Analysis, 2009, 16(3): 923-933.
  • 3Dao N H, Sellami H. Stress intensity factors and fatigue growth of a operation[J]. Engineering Fracture Mechanics, 2012, 96: 626-640.
  • 4Belytschko T, Black T, Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
  • 5Sharma K, Singh I V, Mishra B K, et al. Numerical modeling of part-through cracks in pipe and pipe bend using XFEM [J]. Procedia Materials Science, 2014, 6: 72-79.
  • 6Stolarska M, Chopp D L, Moes N, et al. Modelling crack growth by level sets in the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2001, 51 (8): 943-960.
  • 7Dolbow J E, Nadeau J C. On the use of effective properties for the fracture analysis of microstructured materials[J]. Engineering Fracture Mechanics, 2002, 69(14): 1607-1634.
  • 8杨卫.细观力学和细观损伤力学[J].力学进展,1992,22(1):1-9. 被引量:57
  • 9Taya M, Durra M, Derby B, et al. Thermal residual stress in a two-dimensional in-plane misoriented short fiber composite[J]. Applied Mechanics Reviews, 1990, 43(5S): 294-303.
  • 10何凤兰,李旭东,王国梁.基于DEFORM三维多晶体材料微结构的有限元分析[J].甘肃科技,2009,25(14):10-12. 被引量:2

二级参考文献21

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部