期刊文献+

动车组故障诊断知识挖掘中改进的并行频繁模式增长算法 被引量:4

Improved parallel frequent pattern growth algorithm in EMU's fault diagnosis knowledge mining
下载PDF
导出
摘要 针对动车组历史运维数据的知识挖掘问题,从有效利用动车组历史运维数据来指导动车组故障诊断的角度出发,分析了现有并行频繁模式增长算法的实现形式和不足。结合动车组故障诊断的要求,提出利用局部频繁模式树代替全局频繁模式树的数据挖掘算法。该算法在各主要步骤上均实现了并行处理,优化了局部频繁模式树生成规则,对频繁模式的搜索策略进行了改进。改进后的算法大大提高了关联规则挖掘的效率,挖掘结果很好地保留了故障信息与状态信息之间的关联关系,并合理去除了无效规则。通过对该算法的具体分析与实际测试,表明该算法在动车组故障诊断知识获取过程中具有快速、高效、准确的特点。 Aiming at the knowledge mining problem of Electric Multiple Units (EMU) trains' historical operation and maintenance data, the existing parallel frequent pattern growth algorithm and its disadvantages were analyzed from the perspective of guiding EMU's fault diagnosis. According to the requirements of EMU's fault diagnosis, an im- proved algorithm for data mining which used local frequent pattern tree instead of global frequent pattern tree was proposed. In this algorithm, the parallel processing in every data processing steps was adopted, the production rules of local frequent pattern tree were optimized, and the search strategy of frequent patterns were also improved. The efficiency in the process of mining association rules was greatly improved by the proposed algorithm, the relationship between fault information and state information was kept well by the mining results, and the invalid rules was re- moved reasonably. Based on analysis and experimental tests, the characteristics of fast speed, high efficiency and ac- curacy of the proposed algorithm in the process of knowledge acquisition of EMU's fault diagnosis was illustrated.
作者 周斌 徐文胜
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第10期2450-2457,共8页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2013AA041302)~~
关键词 故障诊断 动车组 关联规则 并行频繁模式增长算法 局部频繁模式树 MAPREDUCE fault diagnosis electric multiple units association rule parallel frequent pattern growth algorithm localfrequent pattern tree MapReduce
  • 相关文献

参考文献14

  • 1黄学文,刘春明,冯璨,王欣,于凤.CHR3高速动车组故障诊断系统[J].计算机集成制造系统,2010,16(10):2311-2318. 被引量:22
  • 2FAN Jianhua, LI Deyi. An overview of data mining and knowl- edge discovery[J]. Journal of Computational Science & Tech- nology, 1998,4(13) :348-368.
  • 3钟雁,马海漫,张春,赵怀昕.改进的FP-tree算法在动车组故障诊断中的应用研究[J].交通运输系统工程与信息,2013,13(6):105-111. 被引量:3
  • 4AGRAWAL R, IMIELINSKI T, SWAMI A. Mining associa- tion rules between sets of items in large data bases[C]//Pro- ceedings of ACM SIGMOD International Conference on Man- agement of Data. New York, N.'Y. , USA: ACM, 1993, 2: 7-216.
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining asso- ciation rules[C]//Proceedings of the 1994 International Con- ference on Very Large Data Bases. Burlington, Mass. , USA: Morgan Kaufmann Publishers Inc. , 1994 : 487-499.
  • 6杨勇,王伟.一种基于MapReduce的并行FP-growth算法[J].重庆邮电大学学报(自然科学版),2013,25(5):651-657. 被引量:29
  • 7张才春,陈建华,花伟.基于不同检修能力的动车组运用计划研究[J].中国铁道科学,2010,31(5):130-133. 被引量:19
  • 8HAN J, PEI J,YIN Y. Mining frequent patterns without can- didate generation[C3//Proceedings of ACM SIGMOD Interna- tional Conference on Management of Data. New York, N.Y. , USA : ACM, 2000 : 1-12.
  • 9DEAN J, GHEMAWAT S. MapReduce: Simplified data pro- cessing on large cluster[J]. Communications of the ACM, 2004,51 (1) : 107-113.
  • 10Tom White. Hadoop:the definitive guide[M]. 3rd ed. Sebas- topoi, Cal. , USA:O'Reilly Media Inc. ,2012:30-32.

二级参考文献74

共引文献104

同被引文献52

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部