期刊文献+

中国数学教育优势:隐性的代数教学设计模型 被引量:4

In Search of Tradition in Chinese Mathematics Education:A Theory for Algebra Instruction
下载PDF
导出
摘要 中国哲学的起源之文化独特性起源于《易经》,其根本哲学思想是以不变应万变,彰显了中国汉语字词和数系的构造模式之文化独特性,在表达形式上强调"以类合类",渗透在中国数学文化之文化独特性,构造了强调类别的数学课程《九章算术》的原型,体现了中国数学教育的文化独特性,即突出强调不变元素(双基)和变异元素(变式)的数学教学思想框架,具体表现在"课程的问题设计"上,强调"一题多解"、"一题多变"和"多题一解"的问题变式的结构,形成了最新代数发展理论模型——螺旋变式课程设计模型.这一模型将有助于从国际视野理解中国数学教育,也为代数的教育发展提供了独特的潜在的设计框架. This study provides the analysis on how the unique feature of Chinese philosophy, variation and invariance soul in " I Ching", could be traced Chinese language, number naming, and mathematics development and ancient mathematics curriculum design. Based on the analysis above, the Chinese rationale and logics, named spiral variation curriculum design, was illustrated. The framework will be conductive the understanding of Chinese mathematics education and curriculum and instruction development for algebra.
作者 孙旭花
出处 《数学教育学报》 CSSCI 北大核心 2016年第5期5-8,共4页 Journal of Mathematics Education
基金 澳门大学研究基金项目——Practice,Theory,and Research:Chinese Mathematics Curriculum Development(MYRG2015-00203-FED)
关键词 系统变式 中国数学教育 变式 合类 代数 systematic variations task design Chinese mathematic education textbook comparison
  • 相关文献

参考文献15

  • 1Nisbett R E, Peng K, Choi I, et al. Culture and Systems of Thought: Holistic vs. Analytic Cognition [J]. PsychologicalReview, 2001,(108): 291-310.
  • 2孙旭花.螺旋变式课程设计模型中“一题多变”设计理念对一元一次方程的教学设计之启示[J].中学数学教学参考,2009,(391): 24-27.
  • 3Lam L Y,Ang T S. Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China [M].Singapore: World Scientific, 1992.
  • 4Wang Q. History of Mathematics Education in China’s Elementary Schools [M]. Jinan: Shandong Education Press,1996.
  • 5郑毓信.变式理论的必要发展[J].中学数学月刊,2006(1):1-3. 被引量:57
  • 6Sun X. “Variation Problems” and Their Roles in the Topic of Fraction Division in Chinese Mathematics TextbookExamples [J]. Educational Studies in Mathematics, 2011, 76 (1): 65-85.
  • 7Sun X. An Insider’s Perspective: “Variation Problems” and Their Cultural Grounds in Chinese Curriculum Practice [J].Journal of Mathematical Education, 2014, (1): 101-114.
  • 8Needham Joseph. Science and Civilization in China: Introductory Orientations [M]. Cambridge: Cambridge UniversityPress, 1954.
  • 9马立平.美国小学数学内容结构之批评[J].数学教育学报,2012,21(4):1-15. 被引量:25
  • 10孙旭花.基于课改透视中国课程设计传统:探索螺旋变式课程的理论价值[C].香港数学教育会议,2015.

二级参考文献33

  • 1郑毓信.变式理论的必要发展[J].中学数学月刊,2006(1):1-3. 被引量:57
  • 2搜狐教育.专访北京高考理科状元:美女状元是个小球迷[EB/OL].http://learning.sohu.com/20080623/ n257684856.shtml.
  • 3张奠宙.数学教育经纬[M].南京:江苏教育出版社,2003.
  • 4黄甫全,王嘉毅.课程与教学论·M].北京:高等教育出版社,2005.88-89.
  • 5Buckingham, Burdette. Elementary Arithmetic: Its Meaning and Practice [M]. Boston: Ginn and Company, 1947/1953.
  • 6Berch, Daniel. Making Sense of Number Sense: Implications for Children with Mathematical Disabilities [J]. Jourrlal of Learning Disabilities, 2005, (38): 333-334.
  • 7Carpenter T, Fennema E, Franke M, et al. Children's Mathematics: Cognitively Guided Instruction [M]. NCTM, Heinemann, 1999.
  • 8Gersten R, Chard D. Number Sense: Rethinking Arithmetic Instruction for Students with Mathematical Disabilities [J]. The Journal of Special Education, 1999, (33): 18-28.
  • 9Kline M. Why Johnny Can't Add: The Failure of the New Math [M]. New York: ST. Martin's Press, 1973.
  • 10Schmidt, William H, Curtis C, et al. A Splintered Vision: An Investigation of U.S. Science and Mathematical Education [M]. Dordrencht, The Netherlands: Klurwer, 1997.

共引文献92

同被引文献82

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部