期刊文献+

基于因子隐马尔可夫模型的负荷分解方法及灵敏度分析 被引量:21

Load Disaggregation Method Based on Factorial Hidden Markov Model and Its Sensitivity Analysis
下载PDF
导出
摘要 负荷分解是智能电网的关键技术,对负荷预测、需求侧管理及电网安全有重要意义。传统负荷分解方法的准确率受限于负荷特征的维度、采样频率和负荷的稳定性。文中提出了基于因子隐马尔可夫模型的负荷分解方法,利用该模型对负荷进行建模,对Viterbi算法进行了扩展并求解负荷状态,进而基于整数规划实现对总负荷的最优分配。该方法对负荷数据的稳定性和采样频率不敏感,可适用于家居和工业电力用户。同时,深入研究了Viterbi算法求解最优状态与观测扰动之间的影响关系,并进一步得到最优状态对于当前观测的允许扰动范围,这对负荷分解最优状态的可靠性评估有重要意义。 As the key technology in smart grid, load disaggregation is important for the tasks such as load forecasting, demand side management and power security. The accuracy of the traditional methods subjects to the dimension of load signatures, the sampling frequency and the stability of load profile. In this paper, a Factorial Hidden Markov Model( FHMM) based load disaggregation method is proposed, which contains the load state disaggregation through extended Viterbi algorithm and the load allocation based on integer programming. The load is modeled as FHMM, and we extend the Viterbi algorithm to solve the FHMM directly. The proposed method is insensitive to the stability and accuracy of power data, so it is suitable for the residential and industrial devices. Meanwhile, through the sensitivity analysis of Viterbi algorithm, the relationship between the optimal states and the disturbance of the observation is established, which is significant for the reliability evaluation of the optimal states.
作者 陈思运 高峰 刘烃 翟桥柱 管晓宏 CHEN Siyun GAO Feng LIU Ting ZHAI Qiaozhu GUAN Xiaohong(State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi' an 710049, China Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi' an 710049, China)
出处 《电力系统自动化》 EI CSCD 北大核心 2016年第21期128-136,共9页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(61473218) 国家重点研发计划资助项目(2016YFB0901904)~~
关键词 隐马尔可夫模型 因子隐马尔可夫模型 负荷分解 灵敏度分析 hidden Markov model factorial hidden Markov model load disaggregation sensitivity analysis
  • 相关文献

参考文献17

  • 1MARCEAU M L, ZMEUREANU R. Nonintrusive load disaggregation computer program to estimate the energy consumption of major end use in residential buildings[J]. Energy Conversion & Management, 2000, 41(13): 1389 1403.
  • 2HART G W. Nonintrusive appliance load monitoring [J ]. Proceedings of the IEEE, 1993, 80(12): 1870-1891.
  • 3LEEB S B, SHAW S R, KIRTLEY J L. Transient event detection in spectral envelope estimates for nonintrusive load monitoring[J]. IEEE Trans on Power Delivery, 1995, 10(3): 1200-1210.
  • 4牛卢璐,贾宏杰.一种适用于非侵入式负荷监测的暂态事件检测算法[J].电力系统自动化,2011,35(9):30-35. 被引量:104
  • 5LAUGHMAN C, LEEK K, COX R, et al. Power signature analysis[J]. IEEE Power & Energy Magazine, 2003, 1(2):56-63.
  • 6COX R, LEEB S B, SHAW S R, et al. Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion[C]// 21st Annual IEEE Applied Power Electronics Conference and Exposition, March 19-23, 2006, Dallas, USA: 7p.
  • 7FERNANDES R A S, SILVA I N D, OLESKOVICZ M. Load profile identification interface for consumer online monitoring purposes in smart grids [J ]. IEEE Trans on Industrial Informatics, 2013, 9(3): 1507-1517.
  • 8BASU K, DEBUSSCHERE V, BACHA S, et ah Nonintrusive load monitoring: a temporal muhilabel classification approach [J]. IEEE Trans on Industrial Informatics, 2015, 11(1): 262- 270.
  • 9ZHAO B, STANKOVIC L, STANKOVIC V. Blind non intrusive appliance load monitoring using graph-based signal processing[C]// 2015 IEEE Global Conference on Signal and Information Processing, December 14-15, 2015, Orlando, USA: 5p.
  • 10ZEIFMAN M, ROUTH K. Nonintrusive appliance load monitoring: review and outlook[J]. IEEE Trans on Consumer Electronics, 2011, 57(1): 76-84.

二级参考文献14

  • 1HART G W. Non intrusive appliance load monitoring[J]. Proceedings of IEEE, 1992, 80(12): 1870-1891.
  • 2STEVENS R, LEEB S B, NORFORD L K, et al. Nonintrusive load monitoring and diagnostics in power systems [J]. IEEE Trans on Instrumentation and Measurement, 2008, 57 (7) : 1445-1454.
  • 3EPRI. Commercial nonintrusive load monitoring system beta test results[R]. 1999.
  • 4LEEB S B. A conjoint pattern recognition approach to nonintrusive load monitoring[D]. Cambridge, MA, USA:Massachusetts Institute of Technology, 1993.
  • 5LEE K D. Electric load information system based on non- intrusive power monitoring[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2003.
  • 6FULLER A E. Harmonic approaches to non-intrusive load diagnostics [ D ]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2008.
  • 7SHAW S R. System identification techniques and modeling for nonintrusive load diagnostics[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2000.
  • 8KHAN U A, LEEB S B, LEE M C. A multiprocessor for transient event detection[J]. IEEE Trans on Power Delivery, 1997, 12(1): 51-60.
  • 9BASSEVILLE M E, NIKIFOROV I V. Detection of abrupt changes: theory and application[M]. Englewood Cliffs, CO, USA: Prentice Hall, 1993.
  • 10BRODSKY B E, DARKHOVSKY B S. Nonparametric methods in change-point problems[M]. Norwell, MA, USA: Kluwer Academic Publishers, 1993.

共引文献103

同被引文献151

引证文献21

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部