期刊文献+

一种提高受限玻尔兹曼机性能的反正切函数逼近L_0范数方法 被引量:1

Enhancing Performance of Restricted Boltzmann Machine Using Arctan Approximation of L_0 Norm
下载PDF
导出
摘要 受限玻尔兹曼机(RBMs)常常作为深度置信网络(DBN)的基本构成模块,通过训练几个RBM,DBN能够快速地被训练好以获得好的工作效果.为了获得更好的数据表示,受稀疏编码理论的启发,本文提出一种新的稀疏RBM,称为AtanRBM.与稀疏RBM(sparse RBM)不同的是,AtanRBM是添加一个arctan正则项(arctan函数逼近L_0范数)直接地约束隐含单元的概率密度空间来达到隐含单元稀疏的效果,而不是约束隐含单元的平均激活概率期望达到相同的较低稀疏水平.在MNIST数据集的实验表明,AtanRBM比当前相关的模型可以学到更稀疏和更具辨别力的表示形式或表示方法,进而由AtanRBM预训练的深层网络能够获得更好的分类效果. Restricted Boltzmann machines { RBMs) are often cited as building blocks of a deep belief network (DBN). By training several RBMs,DBN can be trained quickly to achieve good performance on various machine learning tasks. To further improve the performance of data representation,inspired by sparse coding theory, we propose a novel sparse RBM model in this paper,referred to as AtanRBM. Different from sparse RBM, we encourage the hidden units to be sparse through adding an arctan norm ( arctan approxi- mation of L0 norm } constraint on the probability density space of hidden units directly, rather then constraining the expected activation of every hidden unit to the same low level of sparsity. Some experiments conducted on MNIST dataset show that AtanRBM learns sparser and more discriminative representations compared with the related state-of-the-art models, and then the deep belief network can achieve better classification performance by using layer-wise unsupervised pre-training of two AtanRBMs.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第11期2562-2566,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(11401115)资助 广东省科技创新项目(13KJ0396)资助 广东省科技计划项目(2013B051000075)资助
关键词 数据表示 深度信念网络 受限玻尔兹曼机 稀疏 arctan函数 data representation deep belief network restricted Boltzmann machine sparsity arctan function
  • 相关文献

参考文献30

  • 1Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation,2006,18 ( 7 ) : 1527 -1554.
  • 2Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks [ J ]. Advances in Neural Information Processing Systems ,2007,19:153.
  • 3Poulmey C,Chopra S, Cun Y L. Efficient learning of sparse repre- sentations with an energy-based model[ C ]. Advances in Neural In- formation Processing Systems,2006 : 1137-1144.
  • 4Larochelle H,Erhan D, Courville A, et al. An empirical evaluation of deep architectures on problems with many factors of variation [ C ]. Proceedings of the 24th International Conference on Machine Learning, ACM, 2007 : 473 -480.
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensionality of da- m with neural networks [ J ]. Science,2006,313 ( 5786 ) : 504 -507.
  • 6Lecun Y,Bengio Y,Hinton G. Deep learning[ J]. Nature,2015,521 (7553) :436-444.
  • 7Salakhutdinov R, Hinton G. Semantic hashing [ J ]. International Journal of Approximate Reasoning,2009,50 ( 7 ) :969-978.
  • 8Hinton G E. To recognize shapes, fn-st learn to generate images[ J ]. Progress in Brain Research ,2007,165:535-547.
  • 9Fischer A,Igel C. An introduction to restricted Boltzrnann machines [ M ]. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Springer Berlin Heidelberg ,2012 : 14-36.
  • 10Fischer A, Igel C. Training restricted Boltzmann machines:an intro- duction[ J]. Pattern Recognition ,2014,47 ( 1 ) :25-39.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部