期刊文献+

基于优化权值的多区域采样目标跟踪算法 被引量:1

Multi-region Sampling Object Tracking Algorithm Based on Optimization Weight
下载PDF
导出
摘要 针对多区域采样目标跟踪方法容易出现的区域多样性丧失、跟踪精度下降和跟踪不稳定等问题,本文引入区域优化权值及改进子区域重采样方法,提出基于优化权值的多区域采样目标跟踪算法.该方法利用区域优化权值优化各个子区域的区域置信度适当增加低置信度区域在重采样阶段所分配到的粒子数量,在保证粒子根据区域置信度大小有效分配的前提下,抑制了区域多样性丧失现象发生.本文算法在子区域内引入粒子权重优化权值并设定重采样阈值,缓解粒子贫化充分利用有效粒子信息.实验结果表明,本文方法能有效提高目标跟踪精度,改善目标跟踪稳定性. In this paper, a multi-region sampling object tracking algorithm based on optimization weight is proposed in order to solve the problems of regional diversity and the tracking precision decreased, object tracking instability introduced by object tracking method based on multi-region sampling. In our method,region optimization weight and improved sub-region resampling method is proposed, the regional confidence level of each sub-region is optimized by using the optimization weight to appropriate increase the number of particles low regional confidence level region acquired during resampling phase, under the premise of ensuring the particles is effective allocation according to the regional confidence level, the regional diversity decreasing phenomenon is impactful restrained, In sub-re- gion, the particle weight optimization weight is used to optimize particle weight and set resampling threshold, so as to alleviate particle impoverishment and make full use of effective particle information. Experimental results show that the proposed method can effectively improve the object tracking accuracy and stability.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第11期2588-2592,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61374047)资助
关键词 粒子滤波 多区域采样 优化权值 有效粒子 particle filter multi-region sampling optimization weight effective particle
  • 相关文献

参考文献5

二级参考文献44

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 5GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEE Proceedings on Radar and Signal Processing,1993,140(2):107-113.
  • 6BELVIKEN E,ACKLAM P J.Monte carlo filters for nonlinear state estimation[J].Automatica,2001,37(1):177-183.
  • 7CASELLA G.Statistical inference and monte carlo algorithms[J].Test,1997,5(2):249-344.
  • 8ARULAMPALAM M S,MASKELL S,CORDON N J,et al,A tutorial on particle filters for online non-linear/nonlgaussian bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(20):174-188.
  • 9DOUCET A,CODSILL S J,ANDRIEU C.On sequential monte carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 10LIU J S,CHEN R.Blind deconvolution via sequential imputation[J].Journal of the American Statistical Association,1995,90(2):567-576.

共引文献227

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部