期刊文献+

基于结构风险最小化的TS模糊模型辨识研究 被引量:1

Research on Identifying TS Fuzzy Model Based on Structural Risk Minimization
下载PDF
导出
摘要 针对TS模糊模型的后件参数辨识,为了避免传统意义上以经验风险最小化来求解参数,同时考虑到如何控制模型结构复杂性以及经验风险又要最小,提出了一种基于最小二乘支持向量回归(LSSVR)结构风险分解建立新的代价函数来辨识TS模糊模型。紧接着,以该代价函数作为优化目标,TS模糊模型为约束条件,通过引入拉格朗日方法对其求解,最终得到模型的后件参数。该方法有如下显著特征:1)引出的代价函数是基于结构风险而非经验风险;2)计算过程不仅避免了核函数的选择,而且仅对原输入数据空间做内积;3)全局与局部性能得到保证。最后,论证了该方法的有效性和优越性。 Aiming at the consequent parameters of the TS fuzzy model,a novel cost function based on decomposing LSSVR was proposed to identify consequent parameters,which makes use of the structural risk considering how to control the trade-off between empirical risk and model complexity instead of the conventional empirical risk. And then,a new optimization problem was formulated by treating the obtained cost function as the objective function,TS fuzzy model as constraint condition,and the consequent parameters of TS fuzzy model were derived by applying Lagrange method. The resulting method has the following distinct features:( 1) the obtained new cost function can be regarded as a structural risk instead of empirical risk;( 2) the computation process cannot only avoid the selection of kernel function,but also merely use the scalar product for original input space; and( 3)the approach can well guarantee the performance of both local-regression models and global model. Finally,the viability and superiority of the method were verified by simulation.
作者 刘小雍 周淑芳 熊中刚 陈连贵 阎昌国 LIU Xiaoyong ZHOU Shufang XIONG Zhonggang CHEN Liangui YAN Changguo(College of Engineering and Technology, Zunyi Normal College, Zunyi 563002, China Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China)
出处 《贵州大学学报(自然科学版)》 2016年第4期64-68,73,共6页 Journal of Guizhou University:Natural Sciences
基金 贵州省教育厅项目(黔教合KY字[2015]457号) 省科技厅项目(黔科合LH字[2015]7054号 黔科合LH字[2016]7018号) 遵义师范学院博士项目(遵师BS[2015]04号)
关键词 结构风险最小化 TS模糊模型 代价函数 辨识 structural risk minimization TS fuzzy model cost function identification
  • 相关文献

参考文献12

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its appli- cations to modeling and control [ J ]. Systems, Man and Cybernet- ics, IEEE Transactions on, 1985, 15 ( 1 ) : 116-132.
  • 2Zhao W, Zhang J, Li K. An Efficient LS-SVM Based Method for Fuzzy System Construction, IEEE [ J ].Transactions on Fuzzy Sys- tems, 2015,23(3) : 627-643.
  • 3梁炎明,苏芳,李琦,刘丁.基于支持向量机回归的T-S模糊模型自组织算法及应用[J].自动化学报,2013,39(12):2143-2149. 被引量:11
  • 4Kim J, Suga Y, Won S.A new approach to fuzzy modeling of non- linear dynamic systems with noise : relevance vector learning mech- anism[ J].Fuzay Systems, IEEE Transactons on, 2006, 14(2) : 222-231.
  • 5Mendonca L F, Sousa J M C, Costa J M G S. An architecture for fault detection and isolation based on fuzzy methods [ J ]. Expert Systems with Applieations, 2009, 36(2) :1092-1104.
  • 6郭颖,吕剑虹,吴波,向文国.基于TS模糊模型的热工过程建模方法[J].系统仿真学报,2010,22(1):210-215. 被引量:7
  • 7Wang L, Langari R. Sugeno model, fuzzy discretization, and the EM algorithm[J]. Fuzzy Sets and Systems, 1996, 82(3) :279- 288.
  • 8Chafaa K, Ghanai M, Benmahammed K. Fuzzy modelling using Kalman filter[ J]. Control Theory & Applications, IET, 2007, 1 (1) :58-64.
  • 9Sugeno M, Yasukawa T. A fuzzy-logic-based approach to qualita- tive modeling[ J]. IEEE Transactions on fuzzy systems, 1993, 1 (1) :7-31.
  • 10Nozaki K, Ishibuchi H, Tanaka H.A simple but powerful heuristic method for generating fuzzy rules from numerical data [ J ]. Fuzzy sets and systems, 1997, 86(3) :251-270.

二级参考文献29

共引文献16

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部