摘要
"高分四号"卫星于2015年12月发射成功,主载荷高分辨率相机可解决低轨卫星相机不能满足突变的或连续的自然灾害、恶劣气象等的观测需求问题。要在高约36 000km静止轨道实现快速、连续、可靠、稳定的目标观测,除了具备高性能的高分辨率探测器及其视频处理电路等外,也必须具备相机系统控制技术的管理控制设备来实现相机分系统内部资源的有序调配和系统成像控制。文章介绍了专门针对"高分四号"卫星静止轨道高分辨率相机的管理控制设备的系统构架;推荐了一种新型的高轨相机多元冗余的长寿命运动机构控制架构,并详细介绍了基于该运动机构控制架构的在轨红外定标自主式流程控制和在轨旋转滤光自主式变速控制的新方法;最后,重点阐述了可见光多模式成像控制、红外自动成像模式控制、红外成像保护控制和黑体温度自主控制等多项相机系统控制新技术应用。该文成果在系统可靠性框架、自主控制、软件容错等技术方面可为后续型号产品的研制提供借鉴。
GF-4 satellite was successfully launched at the end of 2015. Its high-resolution camera as the main satellite payload can solve the observation problem that the camera in low orbit cannot observe mutations, continuous natural disasters or adverse weather. To achieve fast, continuous, reliable and stable observation in about 36,000km geostationary orbit, in addition to high-resolution detectors and video processing circuit, it is necessary to rely on orderly deployment of camera internal resources and intelligent imaging control achieved by management and control equipment. This paper describes the system architecture of management and control equipment specialited for GF-4 high-resolution camera of geostationary orbit, recommends a new, long-life and multiple redundant mechanism control architecture in geostationary orbit, and details the autonomous control of the infrared radiation calibration and the autonomous variable speed control of the spectral filter mechanism based on this mechanism control framework. It also describes a variety of new camera system control technology, such as visible multi-mode imaging control, auto infrared imaging mode, infrared imaging control with safeguard and digital PID temperature control. The results of the paper provide references for developing the future products in the aspects of system reliability framework, independent process control, and software fault tolerance.
出处
《航天返回与遥感》
北大核心
2016年第5期58-68,共11页
Spacecraft Recovery & Remote Sensing
基金
国家重大科技专项工程