期刊文献+

解决路网检测器布局问题的数形结合方法 被引量:5

An Algebraic and Graphic Combination Approach to Solve Network Sensor Location Problems
下载PDF
导出
摘要 为了获取各路段的交通流量,本文提出一种解决任意路网中检测器布局优化问题的数形结合方法.首先基于交通网络的拓扑结构与代数关联矩阵间的联系定义平衡矩阵和基本平衡矩阵;然后根据基本平衡矩阵的特点,找到n-1阶数(比网络节点数少1)可逆矩阵M,该矩阵所对应的路段集合就构成路网的一个支撑树(不需要安装检测器的路段集合);最后根据流量守恒原理进行矩阵运算,全面、准确、快速地推算出未安装检测器路段的交通流量.该方法揭示了路网中各路段流量间的数形联系,并避免了单独利用代数或图论方法的操作复杂性,以及获取交通信息不及时性.通过具体算例验证了此方法的可行性和有效性. To obtain the traffic flows on the uninstalled links, an algebraic and graphic combinational approach to determining the optimal sensor locations is proposed. Firstly, based on the connection between the topological structure of traffic network and the algebraic adjacent matrix, the definitions of the equilibrium matrix and the basic balance matrix are presented. Secondly, based on the property of the basic balance matrix, an invertible matrix whose order is one less than the number of nodes can be found out. The set of links corresponding to the above invertible matrix forms a spanning tree of the traffic network. All the links in the spanning tree need not to install sensors. At last, according to the flow conservation principle, the traffic flows on all the uninstalled links can be deduced quickly and accurately through matrix operations.The new method uncovers the algebraic and graphic connections among the link flows and avoids the complexity due to the independent application of algebraic or graphic method. The feasibility and effectiveness of this new method is verified by numerical analysis.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第5期58-63,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(70672110) 上海市(第三期)重点学科(S30504) 上海市一流学科建设项目(S1201YLXK)~~
关键词 智能交通 检测器布局 数形结合 检测器 流量守恒 路段可检测性 intelligent transportation sensor location algebraic and graphic combination sensor flow conservation link observability
  • 相关文献

参考文献13

  • 1YANG H, YANG C, GAN L. Models and algorithmsfor the screen line- based traffic- counting locationproblem[J]. Computers and Operations Research, 2006, 33(3): 836-858.
  • 2GAN L P, YANG H, WONG S C. Traffic countinglocation and error bound in origin- destination matrixestimation problems[J]. Transportation Engineering,2005, 131( 7): 524-534.
  • 3CASTILLO E, MENENDEZ J M, JIMENEZ P. Tripmatrix and path flow reconstruction and estimationbased on plate scanning and link observations[J].Transportation Research Part B, 2008, 42(5): 455-481.
  • 4CASTILLO E, GALLEGO I, SANCHEZ-CAMBRONERO S, et al. Matrix tools for generalobservability analysis in traffic networks[J]. IEEEIntelligent Transportation Systems, 2010, 11(4): 799-813.
  • 5GENTILI M, MIRCHANDANI P B. Locating activesensors on traffic networks[J]. Annals of OperationsResearch, 2005, 136 (1): 229-257.
  • 6CASTILLO E, JIMENEZ P, MENENDEZ J M, et al. Aternary-arithmetic topological based algebraic methodfor networks traffic observability[J]. AppliedMathematical Modelling, 2011, 35(11): 5338-5354.
  • 7LO H K, LUO X W, SIU B W Y. Degradable transportnetwork: travel time budget of travelers withheterogeneous risk aversion[J]. Transportation ResearchPart B, 2006, 40(9): 792-806.
  • 8HU SHOU- REN, PEETA S, CHU C. Identification ofvehicle sensor locations for link- based network trafficapplications[J]. Transportation Research Part B, 2009,43( 8-9) : 873-894.
  • 9NG M W. Synergistic sensor location for link flowinference without path enumeration: A node- basedapproach[J]. Transportation Research Part B, 2012, 46(6): 781-788.
  • 10何胜学.交通网络中线圈布局优化的支撑树算法[J].计算机应用研究,2013,30(12):3576-3578. 被引量:1

二级参考文献33

  • 1Douglas B West.图论导引[M].李建中,骆吉洲,译.北京:机械工业出版社,2006.
  • 2BIANCO L,CONFESSORE G,REVERBERI P.A network basedmodel for traffic sensor location with implications on O/D matrix esti-mates[j].Transportation Science,2001,35(1):50-60.
  • 3GAN Li-ping,YANG Hai,WONG S C.Traffic counting location anderror bound in origin-destination matrix estimation problems[J].Transportation Engineering,2005,131(7):524-534.
  • 4YANG Hai, ZHOU Jing.Optimal traffic counting locations for origin-destination matrix estimation[J].Transportation Research Part B,1998,32(2):109-126.
  • 5CASTILLO E,MENENDEZ J M,JIMENEZ P.Trip matrix and pathflow reconstruction and estimation based on plate scanning and linkobservations[J].Transportation Research Part B,2008,42(5):455-481.
  • 6CASTILLO E,GALLEGO I,SANCHEZ-CAMBRONERO S,et al.Matrix tools for general observability analysis in traffic networks[J].IEEE Intelligent Transportation Systems,2010,11(4):799-813.
  • 7CASTILLO E,CONEJO A J,PRUNEDA RE,et al.Observability inlinear systems of equations and inequalities?? applications[J].Com-puters and Operations Research,2007,34(6):1708-1720.
  • 8CASTILLO E,CONEJO A J,MENENDEZ J M,et al.The obser-vability problem in traffic network models[J].Computer-Aided Civiland Infrastructure Engineering,2008,23(3):208-222.
  • 9CASTILLO E,MENENDEZ J M,SANCHEZ-CAMBRONERO S.Traffic estimation and optimal counting location with path enumerationusing Bayesian networks[J].Computer-Aided Civil and Infra-structure Engineering,2008,23(3):189-207.
  • 10CASTILLO E,JIMENEZ P,MENENDEZ J M,ef at.The obser-vability problem in traffic models:algebraic and topological methods[j].IEEE Trans on Intelligent Transportation Systems,2008,9(2):275-287.

共引文献1

同被引文献39

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部