期刊文献+

时空因素影响下在线短时交通量预测 被引量:14

Online Short-term Traffic Flow Prediction Considering the Impact of Temporal-spatial Features
下载PDF
导出
摘要 考虑交通流的时空因素进行短时交通流预测,能够提高预测的精度.为此,引入径向基核函数,将复杂的预测问题转化为高维空间的回归问题;然后,基于支持向量回归机并考虑时空因素影响作用建立在线的短时交通量预测模型,通过网格搜索的方法对模型参数进行优化;最后,构造时间—空间状态向量,通过不同的状态向量对时间和空间维度的影响进行了分析.利用高速公路检测器数据,对比不同模型的精度,对在线短时交通量预测模型的有效性和可行性进行了验证.结果表明:在线模型精度优于传统的支持向量回归模型,考虑时空因素影响后交通量预测模型具有更高的精度和稳定性. Considering the impact of temporal-spatial features of traffic flow can improve the prediction accuracy. Therefore, this paper introduces a radial kernel function to convert the complex predictive problem into a regression algorithm in high-dimensional space. Then, based on support vector regression, an online short-term traffic flow prediction model considering temporal-spatial features is built. Grid search method is used to optimize the parameters. Finally, state vector is built to analyze the influence of temporal-spatial features. Based on the dataset of detectors in highway, different models are compared and the validity and feasibility of the prediction model are verified. The results indicate that online model is superior to traditional support vector. If considering the influence of temporal-spatial features the prediction model is more accuracy and steady.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第5期165-171,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点基础研究发展计划(973计划)(2012CB725405) 交通运输部科技示范工程(2015364X16030 2014364223150)~~
关键词 智能交通 短时交通量预测 支持向量回归 时空因素 状态向量 intelligent transportation short-term traffic flow forecasting support vector regression temporal-spatial features state vector
  • 相关文献

参考文献13

  • 1SMITH B L, WILLIAMS B M, OSWALD R K.Comparison of parametric and nonparametric models fortraffic flow forecasting[J]. Transportation Research PartC: Emerging Technologies, 2002, 10(4): 303-321.
  • 2NIHAN N L, HOLMESLAND K O. Use of the Box andJenkins time series technique in traffic forecasting[J].Transportation, 1980, 9(2): 125-143.
  • 3WILLIAMS B M, HOEL L A. Modeling and forecastingvehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J]. Journal ofTransportation Engineering, 2003, 129(6): 664-672.
  • 4GHOSH B, BASU B, O’MAHONY M. Bayesian time-series model for short- term traffic flow forecasting[J].Journal of Transportation Engineering, 2007, 133(3):180-189.
  • 5DONG C, RICHARDS S H, YANG Q, et al. Combiningthe statistical model and heuristic model to predict flowrate[J]. Journal of Transportation Engineering, 2014, 140(7): 1943-5436.
  • 6谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 7姚智胜,邵春福,熊志华,岳昊.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报(工学版),2008,38(1):48-52. 被引量:47
  • 8谢海红,戴许昊,齐远.短时交通流预测的改进K近邻算法[J].交通运输工程学报,2014,14(3):87-94. 被引量:32
  • 9王建,邓卫,赵金宝.基于贝叶斯网络多方法组合的短时交通流量预测[J].交通运输系统工程与信息,2011,11(4):147-153. 被引量:23
  • 10LIPPI M, BERTINI M, FRASCONI P. Short-term trafficflow forecasting: An experimental comparison of time-series analysis and supervised learning[J]. IntelligentTransportation Systems, IEEE Transactions on, 2013, 14(2): 871-882.

二级参考文献60

共引文献241

同被引文献89

引证文献14

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部