期刊文献+

基于售检票数据挖掘的轨道交通乘客居住区辨识 被引量:8

Home District Identification for Urban Rail Transit Travelers by Mining Automatic Fare Collection Data
下载PDF
导出
摘要 以自动售检票数据潜在包含的时空关联关系为基础,构建城市轨道交通乘客居住区辨识方法.假设轨道交通大部分乘客出行满足:一日内首次出行起始站与末次出行终点站相同,首次出行起始站与前日末次出行终点站相同,连续时期内首次出行起始站与末次出行终点站总是紧邻'家'的位置,以此为基础构建居住区辨识中心点法.以北京市轨道交通为对象进行实证分析,通过连续一周自动售检票数据挖掘能对88.7%的公交卡(不包括单程票、员工卡)所对应乘客的居住区进行辨识,验证了本文方法的准确性与有效性.本文研究提高了售检票数据应用价值,为乘客出行行为及需求特征分析提供了方法支持. A methodology to identify home location for urban rail transit travelers is proposed in this paper,based on the spatial-temporal relationship within automatic fare collection(AFC) data. It is assumed that:most of travelers end their last trip at the start of their first trip of the day, and most travelers start their first trip at the end of their last trip of the day before, and travelers always start the first trip or end their last trip near their home location, based on these three assumptions a center point estimation algorithm is constructed.Finally, a practical rail transit network from Beijing in China is used to verify the effectiveness and accuracy of the proposed method, and result shows that 88.7 percent of passengers' home district can be identified from one week's AFC records. This study improve the value of AFC data and provide a new method for analyzing the travel behavior and traffic demand characteristics.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第5期233-240,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51478036) 中央高校基本科研业务费专项资金资助(T16JB00260) 中国博士后科学基金(2016M591062)~~
关键词 城市交通 居住区辨识 数据挖掘 城市轨道交通 自动售检票数据 urban traffic home district identification data mining urban rail transit automatic fare collection data
  • 相关文献

参考文献11

  • 1BAGCHI M, WHITE P R. The potential of publictransport smart card data[J]. Transport Policy, 2005, 12(5): 464-474.
  • 2BOWMAN J L, BEN- AKIVA M E. Activity- baseddisaggregate travel demand model system with activityschedules[J]. Transportation Research Part A: Policyand Practice, 2001, 35(1): 1-28.
  • 3ELLDéR E. Residential location and daily traveldistances: The influence of trip purpose[J]. Journal ofTransport Geography, 2014(34): 121-130.
  • 4GONZALEZ P A, WEINSTEIN J S, BARBEAU S J,et al. Automating mode detection for travel behavioranalysis by using global positioning systems-enabledmobile phones and neural networks[J]. IET IntelligentTransport Systems, 2010, 4(1): 37-49.
  • 5ANDERSON I, MAITLAND J, SHERWOOD S, et al.Shakra: Tracking and sharing daily activity levels withunaugmented mobile phones[J]. Mobile Networks andApplications, 2007, 12(2-3): 185-199.
  • 6DEVILLAINE F, MUNIZAGA M, TRéPANIER M.Detection of activities of public transport users byanalyzing smart card data[J]. Transportation ResearchRecord: Journal of the Transportation Research Board,2012(2276): 48-55.
  • 7CHAKIROV A, ERATH A. Activity identification andprimary location modelling based on smart cardpayment data for public transport[C]//13th InternationalConference on Travel Behavior Research, Toronto, 2012:1-23.
  • 8HASAN S, SCHNEIDER C M, UKKUSURI S V, et al.Spatiotemporal patterns of urban human mobility[J].Journal of Statistical Physics, 2013, 151(1-2): 304-318.
  • 9LEE S, HICKMAN M, TONG D. Development of atemporal and spatial linkage between transit demandand land-use patterns[J]. Journal of Transport and LandUse, 2013, 6(2): 33-46.
  • 10褚浩然,郑猛,杨晓光,韩先科.出行链特征指标的提出及应用研究[J].城市交通,2006,4(2):64-67. 被引量:43

二级参考文献4

  • 1[1]Metaxato.Paul.Trip chains-Theoretical development and empirical analysis[D].Chicago:University of Illinois at Chicago,1995
  • 2[2]柴彦威.中国城市的时空间结构[M].北京:北京大学出版社,2000
  • 3[3]Parviza.Koushki and Salehy.Ali.Logistic Models for Complex Trip Chains in Kuwait[R].Kuwait:Department of Civil Engineering,Kuwait University,study report,1999
  • 4[4]J.L.Bowman and M.E.Ben-Akiva.Activity-based disaggregate travel demand model system with activity schedules[J].Transportation Research Part A,35,2000:1~28

共引文献42

同被引文献62

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部