期刊文献+

基于HITS算法的微博用户可信度评估 被引量:3

Evaluation of microblog users' credibility based on HITS algorithm
原文传递
导出
摘要 以新浪微博为研究平台,在HITS(hyperlink-induced topic search)算法的基础上,提出融合用户交互行为和博文内容的微博用户可信度评估算法。分别构建基于交互行为和基于博文内容的微博用户有向链接图,图中节点表示用户,有向边体现用户基于交互行为或基于内容的指向关系;依据HITS算法计算两种拓扑结构下微博用户的权威度和中心度;以融合的权威度作为度量评估用户可信度。试验采用从新浪微博采集的数据作为测试集合,通过反复训练法获得可信度阈值,绘制不同可信度算法的用户可信度曲线,验证了算法的可行性和有效性。 Based on Sina-Microblog and HITS( hyperlink-induced topic search) algorithm,a newuser's credibility algorithm that merged user interactions and blog contents was putted forward. The newalgorithm firstly constructed two directed connection graphs based on user interactions and blog contents respectively,where nodes represented users and arcs embodied the direction relationship between users. Authority and hub of these two connected graphs was computed.The fusion authority was adopted as measurement to evaluate user's credibility. The data collected from Sina-Microblog as test set was used to conduct experiments. Threshold of credibility was obtained by repeated training,and then credibility curves of different algorithms were drawn to verify the feasibility and effectiveness of the newalgorithm.
出处 《山东大学学报(工学版)》 CAS 北大核心 2016年第5期7-12,共6页 Journal of Shandong University(Engineering Science)
基金 河北省社会科学基金资助项目(HB15TQ013)
关键词 HITS算法 微博用户 可信度 交互行为 博文 HITS algorithm microblog users credibility interaction blog
  • 相关文献

参考文献9

二级参考文献153

  • 1秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 2Li J, Sun L, Kit C,et al. A query-focused multi-document summarizer based on lexical chains[C]//Proc, of Document Understanding Conference. 2007.
  • 3Wan X. Document-based HITS model for multi-document summarization [J]. Lecture Notes in Computer Science, 2008, 5351: 454-465.
  • 4Radev D, Jing H, Sty? M, et al. Centroid-based summarization of multiple documents[J]. Information Processing and Management, 2004, 40(6):919-938.
  • 5Hu M, Sun A, Lim E. Comments-oriented document summarization: understanding documents with readers' feedback [C]//Proc of SIGIR'08, NY USA: ACM, 2008: 291-298.
  • 6Brunn M. , Y. Chali, C.J. Pinchak. Text summarization using lexical chains[C]//the Proceedings of the Document Understanding Conference (DUC-2001) 2001 : 135-140.
  • 7Wan X, Yang J. Multi-document summarization using cluster based link analysis [C]//Proc of SIGIR' 08, NY USA: ACM, 2008: 299-306.
  • 8Wang D, Li T, Zhu S, Ding C. Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization[C]//Proc, of SIGIR' 08, NY USA: ACM, 2008. 307-314.
  • 9Zhou L, Hovy E. On the summarization of dynamically introduced information: Online discussions and blogs[C]//Proc, of AAAI'06 Spring Symposium on Computational Approaches to Analyzing Weblogs, Stanford, California: AAAI, 2006: 237-242.
  • 10Mishne G, Glance N. Leave a Reply: An analysis of weblog comments[C]//3rd Annual workshop on the Weblogging Ecosystem. Edinburgh, UK, 2006.

共引文献168

同被引文献46

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部