摘要
在二重耦合网络上考虑意识与疾病共同传播,其中上层网络为意识传播层,下层网络为疾病传播层.与以往研究不同,个体获得疾病信息后,以分配率X成为意识传播但无预防行为者.利用微观马氏链近似方法建立了离散模型,利用拟静态近似方法推导了传染病流行阈值.结果发现,当分配率X<1时流行阈值不仅与各参数有关,而且与意识传播层的稳态值有关;当分配率X=1时,流行阈值与意识层无关,只依赖于接触层.
The awareness and disease diffusion is studied based on double coupling networks, where the upper layer is supporting the spreading of awareness, and the lower layer corresponds to the network in which the epidemic spreading takes place. By using the microscopic Markov-chain approximation approach, we build the discrete-time mathematical model. Based on the quasi-static approximation, the epidemic threshold value is analytically established. The results show that when X〈1, the epidemic threshold value is not only related to all parameters of the system, but also related to the steady value of awareness diffusion; when X=1, the epidemic threshold value is independent of the awareness layer, only dependent of the contact layer.
出处
《江西理工大学学报》
CAS
2016年第5期96-101,共6页
Journal of Jiangxi University of Science and Technology
基金
国家自然科学基金资助项目(61203153
61463022)
关键词
耦合网络
微观马氏链
拟静态近似
流行阈值
coupling networks
microscopic Markov-chain
quasi-static approximation
epidemic threshold value