1Turk M, Pentland A. Eigenfaces for recognition.Journal of Cognitive Neuroscience, 1991,3(1):71-86.
2Turk M, Pentland A. Face Recognition using Eigenfaces. IEEE Conf.on CVPR, Maui, Hawaii, 1991.586-591.
3Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisher- faces: recognition using class special linear projection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1997,19(7):711-720.
4TURK M,PENTLAND A. Eigenface for recognition[J].Journal of Cognitive Neuoscience,1991,(01):71-86.
5BELHUMEUR P,HESPANHA J,KRIEGMAN D. Eigenfaces vs.Fisherfaces:Recognition using class specific finear projection[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):711-720.
6CHEN L F,LIAO H Y M,KO M T. A new LDA-based face recognition system which can solve the small sample size problem[J].{H}Pattern Recognition Letters,2000,(10):1713-1726.
7SONG F X,ZHANG D. A parameterized direct LDA and its application to face recognition[J].{H}NEUROCOMPUTING,2007.191-196.
8ROWEIS S L,SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J].{H}SCIENCE,2000,(5500):2323-2326.
9BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representaiton[J].{H}Neural Computation,2003,(06):1373-1396.
10ZHANG Z Y,ZHA H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].{H}SIAM Journal of Scientific Computing,2004,(01):313-338.