期刊文献+

基于仿生学的不相关局部保持鉴别分析 被引量:4

Uncorrelated Locality Preserving Discriminant Analysis Based on Bionics
下载PDF
导出
摘要 由于形象思维方式是人类的一种本质思维方式,人类通过各种感官来认知事物的规律性,进而提取出具有代表性的特征,因此通过形象思维的方法来提取事物的本质特征符合人类认知事物的规律.针对人脸识别中特征提取问题,该算法以形象认知规律与无监督判别投影为理论基础,提出了一种仿生不相关空间局部保持鉴别分析(biomimetic uncorrelated locality preserving discriminant analysis,BULPDA)算法.算法首先根据人类形象认知的特性构建了一种新的相似系数表示方法;然后结合不相关空间概念,确保矢量空间具有不相关性;最后给出了基于奇异值分解的矢量空间求解方法,形成了一种特征提取新思路.在标准数据库上的实验结果表明,新算法优于传统的特征提取方法和其他改进的局部保持投影方法. Imagery thinking model is an essential way of thinking for human being.It cognizes the regularity of things through various human senses,and then extracts the representative features.Therefore,using the method of imagery thinking to extract the essential characteristics of things is in conformity with the law of human cognition.According to the problem of feature extraction in face recognition technology,we propose an uncorrelated space locality preserving discriminant analysis algorithm—BULPDA based on the theory of unsupervised discriminant projection and image cognitive law.On the basis of the characteristics of human image cognitive,the proposed algorithm first builds a new construction method of similarity coefficient.Then,it applies uncorrelated space concepts to ensure the non-relevance of vector space.Finally,it gives the solution of the proposed algorithm based on singular value decomposition.The algorithm presents a new idea of feature extraction.The experimental results on the standard face database show that the proposed algorithm is better than the traditional preserving projection algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第11期2623-2629,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(90920013 61572458) 国家公派访问学者项目(201404910237) 国家重大科学仪器设备开发专项项目(2014YQ470377)~~
关键词 无监督判别投影 形象认知 不相关空间 特征提取 奇异值分解 unsupervised discriminant projection image cognitive uncorrelated space feature extraction singular value decomposition
  • 相关文献

参考文献4

二级参考文献49

  • 1曾安,郑启伦,潘丹,彭宏.基于排序学习前向掩蔽模型的快速增量学习算法[J].电子学报,2004,32(12):2051-2055. 被引量:4
  • 2庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 3张志伟,夏克文,杨帆,杨瑞霞.一种应用于人脸识别的有监督NMF算法[J].光电子.激光,2007,18(5):622-624. 被引量:7
  • 4祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 5Tenenbaum J B, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000,290(5500) :2319-2323.
  • 6Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000,290 (5500) : 2323- 2326.
  • 7Mikhail Belkin. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation, 2003,15 (6) :1373-1396.
  • 8HE Xiao-fei, CAI Deng, YAN Shui-cheng, et al. Neighborhood preserving embedding [A]. Tenth IEEE International Conference on Computer Vision[C]. Piscataway: Institute of Electrical and Electronics Engineers Inc., 2005,2:1208-1213.
  • 9HE Xiao-fei, YAN Shui-cheng. Face recognition using laplacianfaces[J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005,27 ( 3 ) : 328-340.
  • 10CHEN Hwann-tzong, CHANG Huang-wei, LIU Tyng-luh. Local Discriminant Embedding and Its Variants[A]. 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition[C]. 2005,2 : 846-853.

共引文献17

同被引文献8

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部