期刊文献+

自然循环汽化冷却系统水-水引射的行为

Water-Water Ejecting Behavior in a Natural Circulation Evaporation Cooling System
下载PDF
导出
摘要 以Fluent 6.3为计算平台,采用数值模拟的方法对一种加热炉自然循环汽化冷却启动引射新技术——水-水引射的引射行为进行了系统研究,探讨了引射管管径、出入口直径比和喷射流量等参数对冷却回路循环流速和引射管附近冷却回路局部阻损系数的影响.研究结果表明,管内流场符合受限等温直流引射射流的一般规律.当引射管管径不变时,冷却回路中的循环流速随引射流量的增加而增大,随引射管出入口直径比的增大而减小;当引射流量及引射管出入口直径比不变时,冷却回路中的循环流速随着引射管管径的增大而减小.从引射效果和减小回路阻损的角度来看,缩口型引射管优于扩口型引射管. The ejecting behavior of a new ejecting technique, named water-water ejecting technique, which is used to start up the natural circulation evaporation cooling system for a reheating furnace is numerically simulated with Fluent 6.3 software. The influences of ejecting tube diameter, diameter ratio of outlet to inlet and ejecting flowrate on circulating velocity and local resistance loss coefficient of the evaporation cooling circuit nearby ejecting tube are studied. The results indicated that the flow characteristics of water in the cooling circuit follows the general law of confined isothermal jet ejecting. The circulating velocity increases with the increasing of ejecting flowrate, but it decreases with the increasing of diameter ratio of outlet to inlet when the ejecting tube diameter is constant. At the same time, the circulating velocity decreases with the increasing of ejecting tube diameter when the ejecting flowrate and diameter ratio of outlet to inlet are both constant. The performance of necking-type ejecting tube is better than that of flared-type considering the ejecting performance and resistance loss. © 2016, Editorial Department of Journal of Northeastern University. All right reserved.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第11期1573-1577,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51171041)
关键词 汽化冷却 自然循环 水-水引射 循环流速 阻力损失系数 Cooling systems Evaporation Natural convection Thermoelectric equipment Tubes (components) Velocity
  • 相关文献

参考文献4

二级参考文献31

  • 1吕俊复,赵新木,张建胜,岳光溪,刘青,沈解忠,毛军华,苏小平,董祖康,王政.116MW水冷方形分离循环流化床热水锅炉的运行经验[J].动力工程,2004,24(5):618-622. 被引量:4
  • 2别如山,杨励丹,鲍亦令,陆慧林,吴文渊,张子栋.29MW低倍率循环流化床热水锅炉的设计[J].动力工程,1996,16(4):39-42. 被引量:7
  • 3朱建宁 马才云.实用计算机水动力分析方法.动力工程,1988,(6):55-59.
  • 4Bassiouny M K, Martin H. Flow distribution and pressure drop in plate heat exchanger: 1. U-type arrangement: 2. Z-type arrangement. [J]. Chemical EngineeringScience, 1984, 39(4): 693-700.
  • 5Bajura R A. A model for flow distribution in manifolds[J]. Journal of Engineering for Power, 1981, 93(1): 7-12.
  • 6Majumdar A K. Mathematical modeling of flows in dividing and flow manifold[J]. Applied Mathematical Modeling, 1980, 4(2): 424-432.
  • 7Bajura B A, Jones E H Jr. Flow distribution in manifolds[J]. Journal ofFluidsEngineedng, 1976, 98(12): 654-666.
  • 8Datta A B, Majumder A K. Flow distribution in parallel and reverse flow manifolds[J]. International Journal of Heat and Fluid Flow, 1980, 2(4): 253-262.
  • 9Shen P I. The effect of friction on flow distribution in dividing and combining flow manifolds[J]. Journal of Fluids Engineering, 1992, 114(3): 121-123.
  • 10孙涛.自然循环热水锅炉水动力计算方法及特性研究[D].哈尔滨:哈尔滨工业大学,1990.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部