期刊文献+

基于Gabor特征与局部保护降维的高光谱图像分类算法 被引量:32

Hyperspectral Image Classification Algorithm Based on Gabor Feature and Locality-Preserving Dimensionality Reduction
原文传递
导出
摘要 提出了两种基于Gabor特征与局部保护降维的高光谱图像分类算法。该算法利用嵌入主成分分析的Gabor变换对高光谱图像进行特征提取。为了保护相邻特征的局部信息,利用局部Fisher判别分析或局部保护非负矩阵分离对Gabor特征进行降维,并采用高斯混合模型分类器对降维后的特征进行分类。两组高光谱数据的实验结果表明,本文算法不但能充分挖掘高光谱图像的谱间-空间特征,而且有效保护了高光谱图像的局部特征信息与多模型结构。与现有的几种算法相比,本文算法能得到更高的分类精度和Kappa系数,在高斯噪声环境中也具有更强的稳健性。 Two hyperspectral image classification algorithms based on Gabor features and locality-preserving dimensionality reduction are proposed. The Gabor transform is studied and implemented to extract features for hyperspectral image in the principal component analysis-projected domain. To protect locality information of neighbor features, locality Fisher discriminant analysis or locality-preserving non-negative matrix factorization is employed to reduce the dimensionality of Gabor-based feature space. The Gaussian mixture model classifier is used for classification results. Experimental results obtained from two hyperspectral datasets show that the proposed algorithms not only extract spectral-spatial features effectively, but also preserve local-feature information and multi- model structure of hyperspectral image. Compared with several existing algorithms, the proposed algorithms can obtain high classification accuracy and Kappa coefficient, and has strong robustness in Gaussian noise environment.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第10期504-513,共10页 Acta Optica Sinica
基金 国家自然科学基金(41201363 41601344) 中央高校基本科研业务费专项资金(310832163402 310832161001)
关键词 遥感 高光谱图像分类 GABOR特征 局部保护降维 高斯混合模型 remote sensing hyperspectral image classification Gabor features locality-preserving dimensionality reduction Gaussian mixture model
  • 相关文献

参考文献5

二级参考文献57

  • 1肖韶荣,陈进榜,朱日宏,高志山.基于直角棱镜的光纤光度传感器[J].中国激光,2004,31(12):1513-1517. 被引量:11
  • 2陈春雨,林茂六,张喆.基于支持向量机的信号滤波研究[J].西安交通大学学报,2006,40(4):427-431. 被引量:4
  • 3马宗峰,张春熹,张朝阳,颜廷洋.光学外差探测信噪比研究[J].光学学报,2007,27(5):889-892. 被引量:31
  • 4He X F,Yan S C,Hu Y,et al.Face recognition using Lap-lacianfaces[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(3):328-340.
  • 5Yang J,David Z,Yang J Y,et al.Globally maximizing,lo-cally minimizing:unsupervised discriminant projectionwith applications to face and palm biometrics[J].IEEETransactions on Pattern Analysis and Machine Intelli-gence,2007,29(4):650-664.
  • 6Xu Y,Zhong A N,Yang J,et al.LPP solution schemes foruse with face recognition[J].Pattern Recognition,2010,43(12):4165-4176.
  • 7Lu G F,Lin Z,Jin Z.Face recognition using discriminantlocality preserving projections based on maximum margincriterion[J].Pattern Recognition 2010,43(3):3572-3579.
  • 8Cai D,He X F,Han J W.Orthogonal laplacianfaces forface recognition[J].IEEE Transactions on ImageProcess,2006,15(11):3608-3614.
  • 9Zhu L,Zhu S N.Face recognition based on orthogonaldiscriminant locality preserving projections[J].Neuro-computing,2007,70(9):1543-1546.
  • 10Hu H F.Orthogonal neighborhood preserving discriminantanalysis for face recognition[J].Pattern Recognition,2008,41(6):2045-2054.

共引文献201

同被引文献214

引证文献32

二级引证文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部