期刊文献+

分布数据库关联规则挖掘 被引量:3

Mining association rules in distributed database
原文传递
导出
摘要 先从理论上证明分布数据库局部频繁集与全局候选频繁集之间存在某种关系 ,利用该关系设计分布数据库关联规则挖掘算法 .该算法的局部频繁集挖掘利用FP -树实现 ,不需生成候选频繁集 ,全局频繁集在局部频繁集基础上直接生成 ,不需重新扫描各局部数据库 ,不会造成过度的网络通信开销 。 The paper proves the relation between local frequent sets and the whole frequent set in the distributed database, and designs the algorithm of whole association rules by this relation. The local frequent set mining of the algorithm is completed through FP-tree. Whole association rules are produced from local association rules, and not need to scan local database to reduce the spending of network communication and improve the mining efficiency.
出处 《福州大学学报(自然科学版)》 CAS CSCD 2002年第4期510-513,共4页 Journal of Fuzhou University(Natural Science Edition)
基金 福州大学科技发展基金资助项目 (XKJ(YMD0 12 1)
关键词 分布数据库 数据挖掘 关联规则 局部频繁集 全局候选频繁集 FP-树 data mining association rule database
  • 相关文献

参考文献3

二级参考文献16

  • 1[1]Usama Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth,Ramasamy Uthurusamy,editors. Advances in Knowledge Discovery and Data Mining[M].AAAI Press/The MIT Press,1996
  • 2[2]Gregory Piatesky-Shapiro,William J Frawley,editors. Knowledge Discovery in Databases[M].AAAI Press,1991
  • 3[3]http://www.mis.ccu.edu.tw/jcwang/mis.htm
  • 4[4]R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].Proceedings of the ACM SIGMOD Conference on Management of Data,Washington D.C,1993.5
  • 5[5]Usama M Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth. Knowledge discovery and Data Mining[C].In:Proceedings of the Second In ternational Conference on Knowledge Discovery and Datamining,AAAI Press, 1996
  • 6[6]Srikant R,Agrawal R. Mining quantitative association rules in large relational tables[C].Proceedings of the ACM SIGMOD Conference on Management of Data, 1996
  • 7[7]Rakesh Agrawal,Bamakrishnan Srikant. Fast Algorithms for Mining Association Rules[C].Proceedings of the 20th VLDB Conference,1994
  • 8[8]M Houtsma,A Swami.Set-oriented mining of association rules[R].Research Report RJ9567,IBM Almaden Research Center,1993.10
  • 9[9]R Agrawal,R Srikant. Fast algorithms for mining association rules in large datbases[R].Research Report RJ 9839,IBM Almaden Research Center,San Jose,Galifornia:1994.6
  • 10[10]O.G Piatesky-Shapiro,G Piatesky-Shapiro, editor. Discovery, analysis,and presentation of strong rules[M].Knowledge Discovery in Databases.AAAI/MIT Press, 1991.

共引文献94

同被引文献26

  • 1葛丽娜,钟诚.一个有效的分布式并行挖掘关联规则算法[J].计算机工程与设计,2004,25(8):1258-1260. 被引量:6
  • 2李小兵,吴锦林,薛永生,翁伟.关联规则挖掘算法的改进与优化研究[J].厦门大学学报(自然科学版),2005,44(4):468-471. 被引量:9
  • 3[7]David Hander,Heikki Mannila.数据挖掘原理[M].北京:机械工业出版社,中信出版社,2003.
  • 4张银奎,廖丽,宋俊,等译.数据挖掘原理[M].北京:机械工业出版社,2003
  • 5Agrawal R,Strikant R.Fast algorithms for mining association rules in large databases[A].Proceedings of the 20th international conference on very large databases[C].New York:Institute of Electrical and Electronics Engineers,1994.
  • 6Park J S,Chen M,PS Yu.An effective hash-based algorithm for mining association rules[A].Proc of the ACM SIGMOD Int'l Confon Management of Data[Al.Jose,CA,1995.175~186.
  • 7Ashok Savasere,Edward Omiecinski,Shamkant Navathe.An efficient algorithm for mining association rules in large database[A].Proceeding of the VLDB conference[C].Zurich Switzerland,1995.432~444.
  • 8JiaweiHansMichelineKamber著,范明,孟小峰(译).数据挖掘概念与技术[M].北京:机械工业出版社,2004.150~184.
  • 9AGRAWAL R, SHAFER J C. Parallel Mining of Association Rules: Design, Implementation and Experience [J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6):962 - 969.
  • 10AGRAWAL R,SRIKANT R. Fast Algorithms for Mining Association Rules [A]. HECKERMAN D, MANNILA H,PREGIBON D, et al. Proceedings of the 20th International Conference on Very Large Databases [C]. New York: ACM Press, 1994: 487-499.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部