期刊文献+

A Simple Method for Fabrication of Bionic Superhydrophobic Zinc Coating with Crater-like Structures on Steel Substrate 被引量:3

A Simple Method for Fabrication of Bionic Superhydrophobic Zinc Coating with Crater-like Structures on Steel Substrate
原文传递
导出
摘要 Surface modification with superhydrophobicity is a popular and challenging research field on metals. In this work, a simple method was used to fabricate a bionic superhydrophobic zinc coating with crater-like structures on pipeline steel surface. This method involved electrodeposition of zinc coating and chemical reaction in perfluorooctanoic acid ethanol solution. The per- fluorooctanoic acid with low surface free energy was not only used for chemical etching but also used for fluorinated modifi- cation. The contact angle of water on such superhydrophobic zinc coating was up to 154.21°, and the sliding angle was less than 5° due to the micro crater-like structures and the low surface free energy. Moreover, the prepared superhydrophobic zinc coating demonstrated excellent self-cleaning property and great stability at room temperature, and the contact angle of water on this coating remained stable after storage in air for more than 80 days. This superhydrophobic zinc coating will open much wider applications of electrodeposition metal coating, including self-cleaning property, and can be easily extended to other metals. Surface modification with superhydrophobicity is a popular and challenging research field on metals. In this work, a simple method was used to fabricate a bionic superhydrophobic zinc coating with crater-like structures on pipeline steel surface. This method involved electrodeposition of zinc coating and chemical reaction in perfluorooctanoic acid ethanol solution. The per- fluorooctanoic acid with low surface free energy was not only used for chemical etching but also used for fluorinated modifi- cation. The contact angle of water on such superhydrophobic zinc coating was up to 154.21°, and the sliding angle was less than 5° due to the micro crater-like structures and the low surface free energy. Moreover, the prepared superhydrophobic zinc coating demonstrated excellent self-cleaning property and great stability at room temperature, and the contact angle of water on this coating remained stable after storage in air for more than 80 days. This superhydrophobic zinc coating will open much wider applications of electrodeposition metal coating, including self-cleaning property, and can be easily extended to other metals.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第4期622-630,共9页 仿生工程学报(英文版)
关键词 bionic surface superhydrophobic coating ELECTRODEPOSITION crater-like structure SELF-CLEANING bionic surface, superhydrophobic coating, electrodeposition, crater-like structure, self-cleaning
分类号 Q [生物学]
  • 相关文献

参考文献1

二级参考文献8

共引文献13

同被引文献5

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部