期刊文献+

第四范式:语言研究的新理念 被引量:9

The Fourth Paradigm: New Ideas in Studies of Language Use
下载PDF
导出
摘要 科学研究的第四范式是数据密集型造就的研究范式,它的精髓是在研究中“让数据说话”。在大数据的影响下,人们传统的研究理念和思路会发生变化:从抽样趋向于全样、从关注于因果关系趋向于关心相关关系、从追求精确趋向于获得对发展大趋势的认识。语言研究逃脱不了大数据的“缠绕”。随着数据量的高速增长和计算机算法的发展,计算机依靠语料的大数据将不仅能模拟和仿真,还能进行学习、归纳、分析、推理、总结,并且得到理论;也就是说,过去由索绪尔、乔姆斯基等语言学家从事的工作,部分可以由计算机来做,这开辟了语言科学研究的广阔前景。这样的研究,我们称之为语言的“e-研究”。 The fouith paradigm of scientific research is the research paradigm created to deal the emergence of huge sets of data-intensive, the marrow of which is "Let the data speak". The traditional idea in the research has been changed in three aspects: the development from sampling analysis to complete induction, from causality to correlation, and from exactitude to imprecision. Language studies have to be twined around by big data. With the rapid increasing of the volume of the big data about language uses and the wiser and better development of computer algorithm, computers can not only demonstrate the ability of simulating and emulating, but also do the work of learning, inducting, analyzing, reasoning, summing - up, so as to work out theories; that is to say that part of the researches done in the past by Ferdinand de Saussure and N. Chomsky can be taken place by computers, thus opening up promising prospects in language research. This is termed in this paper as "e-research".
作者 徐盛桓
出处 《英语研究》 2016年第2期76-87,共12页 English Studies
基金 国家社会科学基金项目“构式视角下的双语动量词组认知研究”(15BYY133)的阶段性成果
关键词 第四范式 语言研究 大数据 “让数据说话” e-研究 the fourth paradigm language studies big data "let the data speak" e-research
  • 相关文献

参考文献8

  • 1Floridi, L. Big Data and Their Epistemological Challenge [ J]. Philosophy and Technology, 2012(25): 435 -437.
  • 2Hey, T. Jim Grey on eScience: A Transformed Scientific Method[G] // Tony Hey, Stewart Tansle & Kristin Toll (eds. ) . The Fourth Paradigm : Data - Intensive Scientific Discovery. Washington / Redmond : Microsoft Research, 2009.
  • 3Mayer-Schonberger, V. & K. Cukier, Big Data: A Revolution That Transforms How We Work, Live, and Think [M]. London: John Murray Publishers, 2012.
  • 4Morville,P. Ambient Findability[M]. CA :Sebastopol, 0,Reilly Media,Inc.,2005.
  • 5段伟文.大数据知识发现的本体论追问[J].哲学研究,2015(11):114-119. 被引量:34
  • 6库萨的尼古拉.论有学问的无知[M].尹大贻,朱新民,译.北京:商务印书馆,1997.
  • 7孙闰松,等.AlphaGo并非革命性突破但展示了人工智能通用性[J/OL].[2016 - 04 - 06]. http : //qh. 1732. com/Article/ qihun/news/news/201604/13877, htm.
  • 8徐盛桓.认知语用学研究论纲[J].外语教学,2007,28(3):1-6. 被引量:70

二级参考文献8

  • 1Dan Sperber & Deirdre Wilson. Relevance:Communication and Cognition [M]. Blaekwell Publishers Ltd,1986/1995.
  • 2艾登、米歇尔,2015年:《可视化未来:数据透视下的人文大趋势》,王彤彤、沈伟华、陈学旗译,浙江人民出版社.
  • 3尼尔森,2015年:《重塑发现:网络化科学的新时代》,祁澍文、石雨晴译,电子工业出版社.
  • 4Hey,T等,2012年:《第四范式:数据密集型科学发现》,潘教峰、张晓林等译,科学出版社.
  • 5Anderson, C. , 2008, "The end of theory: the data deluge makes the scientific method obsolete", in Wired.
  • 6Boyd, D. and Crawford, K. , 2012, "Critical questions for big data", in Information, Communication and Society 15 (5).
  • 7Floridi, L. , 2012, "Big data and their epistemological challenge", in Philosophy and Technology 25 (4).
  • 8Kitchin, R. , 2014, "Big data, new epistemologies and paradigm shifts", in Big Data & Society 1 ( 1 ).

共引文献102

同被引文献106

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部