期刊文献+

硅锗等离子体起辉的瞬态不稳定性研究 被引量:1

INVESTIGATION ON THE INITIAL TRANSIENT INSTABILITY OF THE PLASMA IGNITION FROM SILANE/GERMANE/HYDROGEN
下载PDF
导出
摘要 利用光发射谱(OES)监测技术对氢气(H_2)、硅烷(SiH_4)、锗烷(GeH_4)等离子体的起辉稳定时间进行瞬态在线原位监测,探索功率及压强对等离子体起辉稳定时间的影响规律。结果表明,功率对等离子体的起辉稳定性影响较大,即相比于较小功率,在较大功率下起辉时,等离子体需要长很多的时间才能达到稳定状态。但随着功率的增大,气压对起辉稳定性的影响逐渐变得明显。分析认为这种等离子体的起辉不稳定性主要是由硅烷(SiH_4)、锗烷(GeH_4)等气体的反扩散所造成,并进一步发现通过增加氢气流量,可有效降低SiH_4等气体的反扩散程度,缩短硅锗等离子体达稳定状态所需的时间。 The transient instability of H2, SiH4 and GeH4 plasma ignition was investigated by using optical emission spectroscopy (OES) monitoring technology. The influence of the deposition power and pressure on the time for the plasma to be stable was studied. The results show that the effect of the deposition power on the plasma stability is greater than that of the deposition pressure. When the power is high, a long time is needed for the plasma to stabilize, And the effect of the pressure on the plasma stability becomes obviously when the power increases. The transient instability of the plasma ignition can be attributed to the gas back diffusion of SiH4 and GeH4 from the chamber into the electrode space. Further, it is found that such gas back diffusion and instability can be improved greatly by increasing the flow rate of H2 while keeping the good performance of the deposited a-SiGe : H film.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第10期2491-2496,共6页 Acta Energiae Solaris Sinica
基金 国家重点基础研究发展(973)计划(2011CBA00705)
关键词 光发射谱 瞬态不稳定性 反扩散 氢气流量 optical emission spectroscopy transient instability back diffusion flow rate of hydrogen
  • 相关文献

参考文献14

  • 1Mackenzie K D, Eggert J R, Leopold D J, et al.Structural, electrical, and optical properties ofa- Sii. Ge H and an inferred electronic band structure[J]. Physical ReviewB, 1985,31(4): 2198-2212.
  • 2Deng Xunming, Liao Xianbo, Han Sijin, et al.Amorphous silicon and silicon germanium materials forhigh-efficiency triple-junction solar cells [J]. SolarEnergy Materials and Solar Cells, 2000, 62(1-2): 89-95.
  • 3Yang Jeffrey, Yan Baojie,Guha Subhendu. Amorphousand nanocrystalline silicon- based multi- junction solarcells[J].Thin Solid Films, 2005,487(1-2): 162-169.
  • 4Yang J, Banerjee A, Guha S. Triplejunctionamorphous silicon alloy solar cell with 14.6% initial and13.0% stable conversion efficiencies [J]. AppliedPhysics Letters, 1997,70: 2975-2977.
  • 5Feitknecht L, Kluth 0, Ziegler Y, et al.Microcrystalline n-i-p solar cells deposited at 10 A/s byVHF- GD [J]. Solar Energy Materials and Solar Cells,2001,66(104): 397-403.
  • 6武春波,周玉琴,李国荣,刘丰珍.Influence of the initial transient state of plasma and hydrogen pre-treatment on the interface properties of a silicon heterojunction fabricated by PECVD[J].Journal of Semiconductors,2011,32(9):147-150. 被引量:2
  • 7Van den Donker M N, Kilper T, Grunsky D, et al.Microcrystalline silicon deposition : Process stability andprocess control [J]. Thin Solid Films, 2007, 515 (19):7455-7459.
  • 8Hrunski D, Grahlert W, Beese H, et al. Control ofplasma process instabilities during thin silicon filmdeposition [J]. Thin Solid Films, 2009, 517 (14):4188-^191.
  • 9Nakayama Yoshikazu, Ohtsuchi Tetsuro, NakanoMasao, et al. Initial transient phenomena in the plasmadecomposition of silane[J]. Journal of Non-crystallineSolids, 1985,77: 757-760.
  • 10王楠,张瑜,周玉琴.硅异质结电池界面处理关键工艺的研究[J].人工晶体学报,2013,42(2):235-239. 被引量:7

二级参考文献24

  • 1张晓丹,赵颖,朱锋,魏长春,麦耀华,高艳涛,孙建,耿新华,熊绍珍.二次离子质谱深度剖面分析氢化微晶硅薄膜中的氧污染[J].物理学报,2005,54(4):1895-1898. 被引量:6
  • 2Taguchi M, Terakawa A, Maruyama E, et al. Obtaining a higher Voc in HIT cells. Prog Photovolt: Res Appl, 2005, 13:481.
  • 3Tsunomura Y, Yoshimine Y, Taguchi M, et al. Twenty-two percent efficiency HIT solar cell. Solar Energy Materials & Solar Cells, 2009, 93:670.
  • 4Tardon S, Bruggemann R. Characterization of the interface properties in a-Si:H/c-Si heterostructures by photoluminescence. J Phys D: Appl Phys, 2010, 43:115102.
  • 5Fujiwara H, Kondo M. Effects of a-Si:H layer thicknesses on the performance ofa-Si:H/c-Si heterojunction solar cells. J Appl Phys, 2007, 101:054516.
  • 6Nawaz M. Design analysis of a-Si/c-Si HIT solar ceils. Adv Sci Technol, 2010, 74:131.
  • 7Hrunski D, Grahlert W, Beese H, et al. Control of plasma process instabilities during thin silicon film deposition. Thin Solid Films, 2009, 517:4188.
  • 8Van den Donkera M N, Schmitza R, Appenzellera W, et al. The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells. Thin Solid Films, 2006, 511:562.
  • 9Nakayama Y, Ohtsuchi T, Nakano M, et al. Initial transient phenomena in the plasma decomposition of silane. J Non-Cryst Solids, 1985, 77(2): 757.
  • 10Van den Donker M N, Kilper T, Grunsky D, et al. Microcrystalline silicon deposition: process stability and process control. Thin Solid Films, 2007, 515:7455.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部