期刊文献+

利用表面改性制备磷酸锰锂/石墨烯锂离子电池复合材料(英文)

Li Mn PO4/graphene nanocomposites with high electrochemical performance for lithium-ion batteries
下载PDF
导出
摘要 3-氨丙基三甲氧硅烷(APS)改性的磷酸锰锂纳米片与氧化石墨烯通过静电自组装,经喷雾干燥和高温煅烧,得到磷酸锰锂/石墨烯复合材料。APS修饰后的磷酸锰锂带正电荷,并可通过红外光谱中3-氨丙基和SiO C官能团的存在证明磷酸锰锂成功被APS修饰,使得其与带负电荷的氧化石墨烯自组装形成磷酸锰锂/石墨烯复合材料。测试结果表明约25 nm的磷酸锰锂纳米颗粒均匀负载在石墨烯表面,石墨烯片层充当导电网络,提高了材料的电子电导率和锂离子扩散速率,缓解了Li MnPO_4在充放电过程中的体积变化。电性能测试发现,该材料的首次放电比容量为142.2 m A·h·g-1,50个循环后容量保持率达到90.5%,较未经APS修饰的磷酸锰锂/石墨烯材料有大幅提高。 A high performance Li MnPO4/graphene nanocomposite as cathode material for lithium-ion batteries was prepared via surface modification of 3-aminopropyltrimethoxysilane(APS) on Li MnPO4 nanoparticles and electrostatic self-assembly of positively charged APS-Li MnPO4 nanoparticles and negatively charged graphene oxide. Successful APS modification on Li MnPO4 was demonstrated by the existence of 3-aminopropyl and SiO C groups in FTIR spectra. Li MnPO4 nanoparticles(ca. 25 nm) were found uniformly distributed on the surface of graphene sheets. The intimate contact of Li MnPO4 nanoparticles with graphene conductive network allows achieving fast electron transfer between the active material and charge collector and accommodating volume expansion/contraction of Li MnPO4 nanoparticles during electric discharge/charge process. The nanocomposite cathode material could deliver an initial capacity of 142.2 m A·h·g-1 at 0.05 C and maintain 90.5% capacity after 50 cycles, which were significant better than no APS-modified counterpart.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第11期4779-4786,共8页 CIESC Journal
基金 supported by the National Natural Science Foundation of China(21501119 11575105) the Science and Technology Committee of Shanghai(15DZ0501402)~~
关键词 磷酸锰锂 3-氨丙基三甲氧硅烷改性 纳米材料 复合材料 电化学 lithium manganese phosphate aminopropyltrimethoxysilane modification nanomaterials composites electrochemistry
  • 相关文献

参考文献36

  • 1PADHI A K, NAJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1194.
  • 2YAMADA A, KUDO Y, LIU K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4(0≤x≤1)[J]. Journal of the Electrochemical Society, 2001, 148(7):747-754.
  • 3DELACOUT C, LAFFONT L, BOUCHET R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4(M=Fe, Mn) electrode materials[J]. Journal of the Electrochemical Society, 2005, 152(5):913-921.
  • 4KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193.
  • 5ZHAO B, JIANG Y, ZHANG H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1):462-466.
  • 6ZHOU F, COCOCCIONI M, KANG K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11):1144-1148.
  • 7YONEMURA M, YAMADA A, TAKEI Y, et al. Comparative kinetic study of olivine LixMPO4(M=Fe, Mn)[J]. Journal of the Electrochemical Society, 2004, 151(9):1352-1356.
  • 8K?NTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4(M=Mn, M'=Fe, Co, Mg):optimisation routes for LiMnPO4[J]. Journal of Solid State Chemistry, 2014, 42(4):106-117.
  • 9HONG Y, TANG Z, ZHANG Z. Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating[J]. Electrochimica Acta, 2015, 176:369-377.
  • 10DELACOURT C, POIZOT P, MORCRETTE M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders[J]. Chemistry of Materials, 2004, 16(1):93-99.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部