期刊文献+

基于多普勒和散斑跟踪的超声矢量血流成像方法比较 被引量:1

Comparison of ultrasound vector flow imaging based on Doppler and speckle tracking
下载PDF
导出
摘要 目的比较基于多普勒方法(Doppler)与散斑跟踪(speckle tracking,ST)的超声矢量血流成像方法性能。方法利用超高速超声平面波成像技术,结合多角度发射,分别基于多普勒与ST算法进行矢量血流成像,通过仿真、仿体、在体实验比较两种成像方法的优劣。结果对于一个仿真血管,基于多普勒和ST的矢量血流成像方法测得水平速度相对偏差分别为3.15%、4.36%,垂直速度相对偏差分别为1.79%、1.00%。两种方法测量偏差接近。最大血流速度100 cm/s的仿体实验中两种方法所测水平速度相对偏差分别为-5.00%、-5.28%,垂直速度偏差分别为0.53、1.46 cm/s,ST方法偏差较大且表现出对峰值速度的低估。在体结果显示ST相比于多普勒方法所测速度偏低。结论仿真中,多普勒与ST方法能够提供准确度相当的矢量血流成像结果;仿体及在体实验中,ST相比于多普勒方法所测速度偏低。 Objective To comparatively evaluate the performance of vector flow imaging based on Doppler and speckle tracking( ST). Methods Based on ultrafast ultrasound imaging technique with multiangle plane wave transmission, vector flow imaging was performed using Doppler and ST methods,respectively. Performance of the 2 methods was assessed in simulation,phantom,and in vivo study. Results For a simulated artery,the bias of the horizontal velocity component was 3. 15% and 4. 36% in Doppler and ST methods,respectively. The bias of vertical velocity component was 1. 79% and 1. 00%,respectively. The bias of the 2 methods was similar with each other. In the phantom experiment with the maximal velocity of 100 cm / s,the bias was- 5. 00 % and- 5. 28 %,respectively for the horizontal velocity component,and was0. 53 and 1. 46 cm / s respectively for the vertical velocity component. Blood flow estimated with ST method had relatively larger bias,and the peak velocity appeared to be underestimated. In the in vivo experiments,estimated velocity in ST method was smaller than that in Doppler method. Conclusion In simulation,both Doppler and ST methods can achieve considerably accurate vector flow measurements. In the phantom and in vivo studies,the estimated velocity in ST method was smaller than the velocity in Doppler method.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2016年第21期2377-2382,共6页 Journal of Third Military Medical University
基金 国家重点研发计划(2016yfc0102201 2016yfc0104705) 国家自然科学基金面上项目(61271131 81471665)~~
关键词 矢量血流成像 多普勒 散斑跟踪 超高速超声成像 vector flow imaging Doppler speckle tracking ultrafast ultrasound imaging
  • 相关文献

参考文献15

  • 1Evans D H, Jensen J A, Nielsen M B. Ultrasmlic colour Doppler imaging[ J ]. Interface Focus, 2011, 1 (4) : 490 - 502. DO1 : 10. 1098/rsfs. 2011. 0017.
  • 2Pedersen M M, Pihl M J, Haugaard P, et al. Comparison of real-time in z,ivo spectral and vector velocity estimation [ J ]. Uhrasound Med Biol, 2012, 38(1): 145-151. DOI: 10. 1016/j. ullrasmedbio. 2011.10. 003.
  • 3Ekroll I K, Swillens A, Segers P, et al. Simultaneous quantification of flow and tissue velocities based on multi- angle plane wave imaging [ J ]. IEEE Trans Ultrason Fen'oelectr Freq Control, 2013, 60 (4) : 727 - 738. 1)O1 : 10.1109/TUFFC. 2013. 2621.
  • 4Fadnes S, Ekroll I K, Nyrnes S A, et al. Robust angle-independent blood velocity estimation basd on dual-angle plane wave imaging [ J ]. IEEE Trans Ultrason Ferroelectr Freq Control, 2015, 62(10) : 1757 - 1767. DOI: 10. 1109/ TUFFC. 2015. 007108.
  • 5Jensen J A. Comparison of vector velocity imaging using directional beamforming and transverse oscillation for a convex array transducer [ J ]. Pixceedings of SPIE-The International Society fir Optical Engineering, 2014, 9040( 15 ) : 904012 - 904012 - 8.
  • 6何琼,罗建文.超高速超声成像的研究进展[J].中国医学影像技术,2014,30(8):1251-1255. 被引量:9
  • 7Luo J, Konofagou E. A fast normalized cross-correlation calculation method for motion estimation [ J ]. IEEE Trans Uhrason Ferroelectr Freq Control, 2010, 57 ( 6 ) : 1347 - 1357. DOI: 10. ll09/TUFFC. 2010. 1554.
  • 8Svilainis L, Lukoseviciute K, Dumbrava V, et al. Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain [ J ]. Measurement, 2013 (10) : 3950 - 3958. DOI: 10. lO16/j measurement 2013 07. 038.
  • 9Montaldo G, Tanter M, Bercoff J, et al. Coherent plane-wave compounding for very high frame rate uhrasonography and transient elastography [ J ]. IEEE Trans Ultrason Ferroelectr Freq Control, 2009, 56(3) : 489 - 506. DOI: 10. 1109/ TUFFC. 2009. 1067.
  • 10王录涛,肖军,柴华.超声血流成像中的壁滤波器设计方法分析与性能比较[J].生物医学工程学杂志,2015,32(4):773-778. 被引量:3

二级参考文献43

  • 1罗建文,白净.超声弹性成像的研究进展[J].中国医疗器械信息,2005,11(5):23-31. 被引量:150
  • 2Montaldo G, Tanter M, Bercoff J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transi- ent elastography. IEEE Trans Ultrason Ferroelectr Freq Control, 2009,56(3) :489-506.
  • 3Denarie B, Tangen TA, Ekroll IK, et al. Coherent plane-wave compounding for very high frame rate ultrasonography of rapidly moving targets. IEEE Trans Med Imaging, 2013, 32 (7): 1265- 1276.
  • 4Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroeleetr Freq Control, 2014, 61 (1):102- 119.
  • 5Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: A new ultrasonic tchinology of medical diagnos- tics. Ultrasound Med Biol, 1998,24(9):1419-1435.
  • 6Bercoff J, Tanter M, and Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans Ul- trason Ferroelectr Freq Control, 2004,51(4) :396-409.
  • 7Bavu E, Gennisson J L, Couade M, et al. Noninvasive in vivo liv- er fibrosis evaluation using supersonic shear imaging: A clinical study on 113 hepatitis c virus patients. Ultrasound Med Biol, 2011,37(9) :1361-1373.
  • 8Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assess- ment of breast lesion viscoelasticity : Initial clinical results using su- personic shear imaging. Ultrasound Med Biol, 2008, 34(9) : 1373- 1386.
  • 9Slapa RZ, Piwowonski A, Jakubowski WS, et al. Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: Case series with comparative evaluation. J Thy- roid Res. 2012:657147.
  • 10Shinohara M, Sabra K, Gennisson JL, et al. Real-time visual- ization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve, 2010, 42(3) :438-441.

共引文献10

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部