期刊文献+

基于教育大数据的量化自我MOOC自适应学习系统研究 被引量:46

Research on Quantified Self MOOC Adaptive Learning System Based on Educational Big Data
下载PDF
导出
摘要 教育大数据创新性地完善了当前学习系统的架构,实现了基于数据流的学习分析和挖掘机制,让以往难以实现的精准分析成为了可能,而量化自我算法将成为教育大数据分析和实现自适应学习的关键所在。本文首先分析了教育大数据背景下作为个人级数据应用的量化自我概念。然后,讨论如何通过全面地记录、跟踪和可视化学习者的学习行为,促使量化自我算法更容易、准确地获得学习者的经验,实现以学习者的认知需求为中心来优化学习者的学习过程。进而提出基于量化自我算法的MOOC自适应学习系统的模型,并且对该模型的结构进行了详细分析。最后,结合基于网络学习行为分析的智能反馈策略和认知思维层次的在线学习行为分类,构建了量化自我学习算法QSLA(Quantified Self Learning Algorithm)作为实现基于教育大数据的自适应学习的基础。 Educational big data have creatively improved and perfected the architecture of learning system and realized learning analytics and data mining based on data flow. Educational big data thus have also made it possible to achieve precise analysis of learning, which was difficult in the past. Quantified self algorithm will become the key to the analysis of educational big data and the application of adaptive learning system. This paper first analyzes the concept of quantified self the use of educational big data at individual learner level. Then, this paper discusses how to utilize comprehensive recording, tracking, and visualization of learners" behavior to assist quantitative self algorithm to acquire learners" experiences more easily and accurately, and thus to optimize learners" learning process centered on the their cognitive needs. The paper further proposes a model of MOOC adaptive learning system based on quantified self algorithm and explains the structure of this model in detail. Finally, based on the intelligent feedback strategy and the cognitive level of classification of online learning behavior, this paper advances the QSLA (Quantified Self Learning Algorithm) as the foundation to realize adaptive learning based on educational big data.
出处 《电化教育研究》 CSSCI 北大核心 2016年第11期38-42,92,共6页 E-education Research
关键词 教育大数据 自适应学习 量化自我 QSLA Educational Big Data Adaptive Learning Quantified Self QSLA
  • 相关文献

参考文献11

二级参考文献126

  • 1杨卉,王陆,冯红.在智能教学系统中两层动态学生模型的研究[J].电化教育研究,2005,26(1):72-75. 被引量:26
  • 2高文.共建教师发展的开放学习环境——探索以网络为中介的研究型课程的教师教育模式[J].开放教育研究,2005,11(6):8-13. 被引量:17
  • 3刘宇,解月光.动态学生模型与智能支持服务研究[J].中国电化教育,2006(10):94-98. 被引量:16
  • 4P. Bmsilovsky. Adaptive and intelligent technologies for web-based education [J]. KI-Kunstliche InteUigenz,1999,(13): 19-25.
  • 5P. Brusilovsky, M.T. Maybury.From adaptive hypermedia to the adaptive web [J]. Communications of the ACM,2003,45 (5): 30-33.
  • 6Martins, A. C., Faria, L., Vaz de Carvalho, C., Carrapatoso, E.User Modeling in Adaptive Hypermedia Educational Systems [J]. Educational Technology & Society, 2008,11 (1):194-207.
  • 7Brusilovsky, P.. Methods and techniques of adaptive hypemledia[J]. User Modehng and User-Adapted Interaction, 1996,6 (2-3):87-129.
  • 8R. M. Felder, L. K. Silverman.Leaming and teaching styles in engineering education [J]. Engineering Education, 1988,78(7):674-681.
  • 9Atfonseca Enrique, Carro Rosa,Martln Estefania,Ortigosa Alvaro, Paredes Pedro. The impact of learning styles on student grouping for collaborative learning: a case study [J]. User Modeling and User-Adapted Interaction,2006,(9):377-401.
  • 10Enver Sangineto, Nicola Capuano, Matteo Gaeta, Alessandro Micarelli.Adaptive course generation through learning styles representation [J]. Univ Access lnf Soc., 2008,(7):1-23.

共引文献1018

同被引文献520

引证文献46

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部