期刊文献+

偏高岭土-粉煤灰地聚物混凝土高温后的力学性能研究 被引量:8

Experimental Study on Mechanical Properties of Metakaolin-fly Ash-based Geopolymer Concrete after Exposure to Elevated Temperatures
下载PDF
导出
摘要 采用钾水玻璃激发偏高岭土和粉煤灰的混合物制备地聚物。对不同水胶比(0.45、0.40、0.35)、砂率(0.25、0.30、0.35)和骨胶比(3.0、3.5、4.0)的地聚物混凝土进行常温下的抗压及劈拉强度试验,并据此优选地聚物混凝土配方,而后进行地聚物混凝土高温后的抗压及劈拉强度试验。结果表明:随温度升高,地聚物混凝土的抗压及劈拉强度逐渐降低,且在300-500℃间,强度下降尤为明显;相比于抗压强度,地聚物混凝土的高温后劈拉强度降低得更快。对比文献发现,本文的地聚物混凝土高温后相对残余抗压强度要明显高于普通混凝土。根据试验结果,建立了地聚物混凝土高温后抗压强度与劈拉强度的关系式,公式计算结果与试验结果吻合较好。 Geopolymer was prepared through potassium silicate solution activating metakaolin and fly ash blend. Compressive and splitting tensile strength tests were carried out on geopolymer concrete specimens with different water-cement ratios (0.45, 0.40, 0.35), sand ratios (0.25, 0.30,0.35) and aggregate-binders (3.0,3.5,4.0) at room temperature. Based on these test results, the optimal formula of geopolymer concrete was determined, and compressive and splitting tensile strength tests were conducted after exposure to elevated temperatures on geopolymer concrete prepared with the optimal formula. The test results show that compressive and splitting tensile strength of geopolymer concrete decrease with an increase in temperature, especially a great decrease of strength occurs in 300-500 ℃ range. In comparison to compressive strength, the splitting tensile strength of geopolymer concrete after exposure to elevated temperatures decreases with temperatures at a higher rate. The test results on compressive strength of geopolymer concrete after exposure to elevated temperatures were compared with that of ordinary concrete from literatures. And it shows that geopolymer concrete exhibits higher compressive strength. A formula describing the relationship between the compressive and splitting strength of geopolymer concrete were built through regression analysis, and the calculation results from the formula agree well with test results.
出处 《防灾减灾工程学报》 CSCD 北大核心 2016年第3期373-379,共7页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金项目(51478195) 华南理工大学亚热带建筑科学国家重点实验室自主课题项目(2013ZC21)资助
关键词 地聚物混凝土 抗压强度 劈拉强度 高温 geopolymer concrete compressive strength splitting tensile strength high temperature
  • 相关文献

参考文献17

  • 1Hardjito D,Wallah S E,Sumajouw D M J,et al.On the development of fly ash-based geopolymer concrete[J].ACI Materials Journal,2004,101(6):467-472.
  • 2Mehta P K.Greening of the concrete industry for sustainable development[J].ACI Concrete Int,2002,24(7):23-8.
  • 3Davidovits J.Geopolymer cement to minimize carbondioxide greenhouse-warming[J].Ceram Trans,1993,37:165-182.
  • 4Jannie S J,Van D,John L P,et al.Technical and commercial progress in the adoption of geopolymer cement.Minerals Engineering,2012,(29):89-104.
  • 5Davidovits J.Geopolymers and geopolymeric materials[J].Journal of Thermal Analysis and Calorimetry,1989,35(2):429-441.
  • 6Navid R,Mehdi M,Alengaram U J,et al.Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures[J].Construction and Building Materials,2014,(65):114-121.
  • 7Burciaga-Díaz1O,Escalante-Garcia1JI,MagallanesRivera R X.Compressive strength and microstructural evolution of metakaolin geopolymers exposed at high temperature[J].ALCONPAT Journal,2015,5(1):54-72.
  • 8Kong D L Y,Sanjayan J G,Sagoe-Crentsil K.Comparative performance of geopolymer made with metakaolin and fly ash after exposure to elevated temperatures[J].Cement and Concrete Research 37,2007,(37):1583-1589.
  • 9张海燕,祁术亮,曹亮.地聚物净浆、砂浆和混凝土高温后力学性能比较[J].防灾减灾工程学报,2015,35(1):11-16. 被引量:16
  • 10普通混凝土力学性能试验方法标准[S].GB/T50081-2002,2002

二级参考文献21

  • 1Lea F M 唐明述译.The chemistry of cement and concrete[M].北京:中国建筑工业出版社,1984..
  • 2[1]DAVIDOVTIS J.Mineral polymers and methods of making them[P].U.S.Patent:4349386,Sept.1982.
  • 3[2]DAVIDOVITS J.Synthetic mineral polymer compound of the silicoaluminates family and preparation process[P].U.S.Patent:4472199,Sept.1984.
  • 4[8]VALERIA F F B,KENNETH J D M.Synthesis and thermal behaviour of potassium sialate geopolymers[J].Materials Letters,2003,57:1477-1482.
  • 5[9]VALERIA F F B,KENNETH J D M,CLELIO THAUMATURGO.Synthesis and characterization of materials based on inorganic polymers of alumina and silica:sodium polysialate polymers[J].International Journal of Inorganic Materials,2000,2:309-317.
  • 6[10]余振宝.沸石加工与应用[M].北京:化学工业出版社,2005,231-232.
  • 7GB/T17671-1999,水泥胶砂强度检验方法[S].
  • 8Davidovits J.Geopolymers and geopolmeric materials[J].Journal of Thermal Analysis and Calorimetry,1989,35(2):429-441.
  • 9郭伟,李东旭,杨南如.胶凝材料在我国的研究发展[C]∥第一届化学碱激发胶凝材料研讨会议文集.南京:东南大学出版社,2004.75-80.
  • 10Kong D L Y,Sanjayan J G,Sagoe-Crentsil K K.Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures[J].Cement and Concrete Research,2007,(37):1583-1589.

共引文献203

同被引文献68

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部