期刊文献+

水稻抗非生物逆境功能基因的发掘 被引量:11

The exploitation of rice functional genes for abiotic stress
原文传递
导出
摘要 水稻遭受的非生物逆境包括干旱、淹涝、盐害、低温、高温等。非生物逆境抗性有着复杂的遗传和分子基础,解析水稻非生物逆境抗性的机制将有助于抗逆新品种的培育。抗逆性受到很多小效应遗传位点的控制,成百上千个与形态和生理响应以及发育相关的基因和抗逆性相关。尽管在水稻中已鉴定了很多抗逆相关基因,但直接利用抗逆基因进行水稻抗逆遗传改良的成功例子还非常少。最近的抗逆基因功能研究发现,很多基因在形态和生理水平响应或调控不同的逆境,这为理解水稻复杂的抗逆机制提供了新的线索。现简要概述了近年来水稻主要非生物逆境抗性相关基因分离和功能鉴定方面的研究进展。 The major abiotic stresses for rice include drought, submergence, salinity, low temperature, heat, etc. Abiotic stress resistance has complex genetic and molecular bases. Elucidation of the mechanisms underlying stress resistance of rice will accelerate the development of new varieties with enhanced resistance to the abiotic stresses.Stress resistance is controlled by numerous small-effect loci. Hundreds of genes controlling various morphological and physiological responses and developmental processes are involved in stress resistance, and these genes are collectively called stress-related genes. Although numerous genes have been characterized for their diverse roles in stress resistance, very few of them have been successfully applied in breeding, suggesting the complexity of stress resistance. Recent functional studies uncovered many genes that control various morphological and physiological responses to different stresses, which may provide new insight into understanding the complex mechanisms of stress resistance in rice. The progress in genetic, genomic, and molecular studies of stress resistance in rice in recent years is briefly reviewed in this article.
出处 《生命科学》 CSCD 2016年第10期1216-1229,共14页 Chinese Bulletin of Life Sciences
基金 国家重点研发计划"水稻功能基因组研究与应用"(2016YFD0100900) 国家重点基础研究发展计划("973"项目)(2012CB114305)
关键词 水稻 功能基因 数量性状位点 干旱胁迫 淹涝胁迫 盐胁迫 冷胁迫 高温胁迫 Oryza sativa functional genes quantitative trait locus (QTL) drought stress submergence stress salinity stress low temperature stress heat stress
  • 相关文献

参考文献4

二级参考文献43

  • 1Thomashow MF. So what's new in the field of plant cold acclimation? lots! Plant Physiol 2001; 125:89-93.
  • 2Sanders P, Markhart AH.'Root system functions during chilling temperatures: injury and acclimation. In: Basra S, eds. Crop responses and adaptations to temperature stress. Haworth Press:New York 2001:77-108
  • 3Perez de Juan J., Irigoyen J J, Sanchez-Diaz M. Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines Changes in water relations and ABA contents. Plant Sci 1997; 122:71-79.
  • 4Aroca R, Tognoni F, Irigoyen J J, Sanchez-Diaz M, Pardossi A. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem 2001;39:1067-1073.
  • 5Melkonian J, Yu LX, Setter TL. Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid,and stomatal conductance. J Exp Bot 2004; 55:1751-1760.
  • 6Aroca R, Amodeo G., Femandez-Illescas S, et al. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maizeroots. Plant Physiol 2005; 137:341-353.
  • 7Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M.Identification of 33 Rice Aquaporin genes and analysis of their expression and function. Plant Cell Physiol 2005; 46:1568-1577.
  • 8Vernieri P, Lenzi A, Figaro M, Tognoni F, Pardossi A. How the roots contribute to the ability ofPhaseolus vulgaris L. to cope with chilling-induced water stress. J Exp Bot 2001; 52:2199-2206.
  • 9Fennell A, Markhart AH. Rapid acclimation of root hydraulic conductivity to low temperature. J Exp Bot 1998; 49:879-894.
  • 10Wan X, Zwiazek J J, Lieffers V J, Landhausser SM. Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperatures. Tree Phyiol 2000; 21:691-696.

共引文献52

同被引文献108

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部